An accessible introduction to applied data science and machine learning, with minimal math and code required to master the foundational and technical aspects of data science.
In Just Enough Data Science and Machine Learning, authors Mark Levene and Martyn Harris present a comprehensive and accessible introduction to data science. It allows the readers to develop an intuition behind the methods adopted in both data science and machine learning, which is the algorithmic component of data science involving the discovery of patterns from input data. This book looks at data science from an applied perspective, where emphasis is placed on the algorithmic aspects of data science and on the fundamental statistical concepts necessary to understand the subject.
The book begins by exploring the nature of data science and its origins in basic statistics. The authors then guide readers through the essential steps of data science, starting with exploratory data analysis using visualisation tools. They explain the process of forming hypotheses, building statistical models, and utilising algorithmic methods to discover patterns in the data. Finally, the authors discuss general issues and preliminary concepts that are needed to understand machine learning, which is central to the discipline of data science.
The book is packed with practical examples and real-world data sets throughout to reinforce the concepts. All examples are supported by Python code external to the reading material to keep the book timeless.
Notable features of this book:
"Sinopsis" puede pertenecer a otra edición de este libro.
Mark Levene is emeritus professor of Computer Science at Birkbeck University of London. His main area of expertise is Data Science and Machine Learning, including Applied Machine Learning, Trustworthy and Safe AI, and more.
Dr. Martyn Harris is a lecturer and Programme Director at Birkbeck University of London. His areas of expertise include Data Science, Machine Learning, and Natural Language Processing.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,97 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 0,74 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9780138340742
Cantidad disponible: 15 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9780138340742
Cantidad disponible: 15 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 2 working days. 374. Nº de ref. del artículo: B9780138340742
Cantidad disponible: 2 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780138340742
Cantidad disponible: 7 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. An accessible introduction to applied data science and machine learning, with minimal math and code required to master the foundational and technical aspects of data science. In Just Enough Data Science and Machine Learning, authors Mark Levene and Martyn Harris present a comprehensive and accessible introduction to data science. It allows the readers to develop an intuition behind the methods adopted in both data science and machine learning, which is the algorithmic component of data science involving the discovery of patterns from input data. This book looks at data science from an applied perspective, where emphasis is placed on the algorithmic aspects of data science and on the fundamental statistical concepts necessary to understand the subject. The book begins by exploring the nature of data science and its origins in basic statistics. The authors then guide readers through the essential steps of data science, starting with exploratory data analysis using visualisation tools. They explain the process of forming hypotheses, building statistical models, and utilising algorithmic methods to discover patterns in the data. Finally, the authors discuss general issues and preliminary concepts that are needed to understand machine learning, which is central to the discipline of data science. The book is packed with practical examples and real-world data sets throughout to reinforce the concepts. All examples are supported by Python code external to the reading material to keep the book timeless. Notable features of this book: Clear explanations of fundamental statistical notions and conceptsCoverage of various types of data and techniques for analysisIn-depth exploration of popular machine learning tools and methodsInsight into specific data science topics, such as social networks and sentiment analysisPractical examples and case studies for real-world applicationRecommended further reading for deeper exploration of specific topics. Nº de ref. del artículo: LU-9780138340742
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Just Enough Data Science and Machine Learning: Essential Tools and Techniques 0.81. Book. Nº de ref. del artículo: BBS-9780138340742
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780138340742_new
Cantidad disponible: 7 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46867922
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2025. 1st Edition. paperback. . . . . . Nº de ref. del artículo: V9780138340742
Cantidad disponible: 7 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 46867922-n
Cantidad disponible: 3 disponibles