Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.
"Sinopsis" puede pertenecer a otra edición de este libro.
Xin-She Yang obtained his DPhil in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as a Senior Research Scientist. He is currently a Reader in Modelling and Simulation at Middlesex University London, Fellow of the Institute of Mathematics and its Application (IMA) and a Book Series Co-Editor of the Springer Tracts in Nature-Inspired Computing. He has published more than 25 books and more than 400 peer-reviewed research publications with over 82000 citations, and he has been on the prestigious list of highly cited researchers (Web of Sciences) for seven consecutive years (2016-2022).
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning as well as optimization. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modelling skills so they can process and interpret data for classification, clustering, curve-fitting, and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
Paperback. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned0128172169
Cantidad disponible: 1 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 30909499c61ae8852123549be78d28e0
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 188. Nº de ref. del artículo: 369621299
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 35623078-n
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 173 pages. 8.75x5.75x0.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0128172169
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 188. Nº de ref. del artículo: 26376456940
Cantidad disponible: 3 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Englisch. Nº de ref. del artículo: 9780128172162
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 188. Nº de ref. del artículo: 18376456934
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 35623078
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 35623078-n
Cantidad disponible: Más de 20 disponibles