General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Xiao-Jun Yang is a full professor of China University of Mining and Technology, China. He was awarded the 2019 Obada-Prize, the Young Scientist Prize (Turkey), and Springer's Distinguished Researcher Award. His scientific interests include: Viscoelasticity, Mathematical Physics, Fractional Calculus and Applications, Fractals, Analytic Number Theory, and Special Functions. He has published over 160 journal articles and 4 monographs, 1 edited volume, and 10 chapters. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Methods in the Applied Sciences, Mathematical Modelling and Analysis, Journal of Thermal Stresses, and Thermal Science, and an associate editor of Journal of Thermal Analysis and Calorimetry, Alexandria Engineering Journal, and IEEE Access.
Dr. Feng Gao is the associated dean and the leading professor of State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology. He is the recipient of the State Natural Science Award and the State Science and Technology Award. He has published over 280 scientific papers in the field of nonlinear mechanics, rock mechanics and underground engineering. He also serves as the PI or Co-PI of the National Key Research and Development Program of China, the National 973 Project, the funding of National Natural Science Foundation of China, the National Science and Technology Innovation Project, and the Research Innovation Group Project of the Ministry of Education.
Dr. Yang Ju is Vice Director of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, China. He is the Cheung Kong Distinguished Professor of Geomechanics in Mining, Petroleum and Geotechnical Engineering. His current research interests include Fractal Geometry and Applications in Mining, Petroleum and Geotechnical Engineering, Transparentization and Visualization Methods for Discontinuous Structures and Stress Field of Rock Masses, and Transparentization and Prediction Methods for Rock Disasters.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,37 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. Englisch. Nº de ref. del artículo: 9780128172087
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 395 pages. 9.00x6.00x1.10 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0128172088
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the. Nº de ref. del artículo: 276069261
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. Nº de ref. del artículo: 9780128172087
Cantidad disponible: 2 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: cad8fc11c8a0cc9bc6ca090f99955a99
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 702. Nº de ref. del artículo: B9780128172087
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780128172087_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 39847707-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 39847707-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 39847707
Cantidad disponible: Más de 20 disponibles