Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter.
This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Daniel A. Griffith is an Ashbel Smith Professor Emeritus of Geospatial Information Sciences at
the University of Texas at Dallas, United States; a past affiliated Professor in the College of Public
Health at the University of South Florida, United States; and an Adjunct Professor in the Department
of Resource Economics and Environmental Sociology at the University of Alberta, Canada. He
specializes in spatial statistics, quantitative-urban-economic geography, and urban public health.
Yongwan Chun is an Associate Professor of Geospatial Information Sciences at the University of Texas at Dallas. His research interests lie in spatial statistics and GIS, focusing on urban issues, including population movement, environment, health, and crime. His research has been supported by the US National Science Foundation, and the US National Institutes of Health, among others. He has over 50 publications, including books, journal articles, book chapters, and conference proceedings.
Today, Dr. Li’s research is focused on statistics and machine learning. He has published >75 peer reviewed research papers with >1,300 citations of his work.
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides both the theoretical foundations and guidance on practical implementation for the eigenvector spatial filtering (ESF) technique. ESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is its simplicity. With its flexible structure, ESF can be easily applied to generalized linear regression models as well as linear regression models. Spatial Regression Analysis Using Eigenvector Spatial Filtering discusses ESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, and spatial interaction models. It provides a tutorial for ESF model specification and interfaces with user-friendly software developed by the authors for implementing ESF.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,04 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. Englisch. Nº de ref. del artículo: 9780128150436
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 286. Nº de ref. del artículo: 380712317
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 432 pages. 8.90x5.90x0.70 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0128150432
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical meth. Nº de ref. del artículo: 267045793
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 480. Nº de ref. del artículo: B9780128150436
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 286. Nº de ref. del artículo: 26382110370
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. Nº de ref. del artículo: 9780128150436
Cantidad disponible: 2 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 5108bd5ff7d05c6605d3458d36dee6e9
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780128150436_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 35623033-n
Cantidad disponible: Más de 20 disponibles