Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature.
"Sinopsis" puede pertenecer a otra edición de este libro.
Professor Paul Sacks received his B.S. degree from Syracuse University and M.S. and Ph.D. degrees from the University of Wisconsin-Madison, all in Mathematics. Since 1981 he has been in the Mathematics department at Iowa State University, as Full Professor since 1990. He is particularly interested in partial differential equations and inverse problems. He is the author or co-author of more than 60 scientific articles and conference proceedings. For thirty years he has regularly taught courses in analysis, differential equations and methods of applied mathematics for mathematics graduate students.
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature.
About the Author
Professor Paul Sacks received his B.S. degree from Syracuse University and M.S. and Ph.D. degrees from the University of Wisconsin-Madison, all in Mathematics. Since 1981 he has been in the Mathematics department at Iowa State University, as Full Professor since 1990. He is particularly interested in partial differential equations and inverse problems. He is the author or co-author of more than 60 scientific articles and conference proceedings. For thirty years he has regularly taught courses in analysis, differential equations and methods of applied mathematics for mathematics graduate students.
About Mathematics in Science and Engineering
Series Editor: Goong Chen
Editorial Board: Helene Frankowska, Jordi Boronat Medico, Vicentiu Radulescu, Ulrich Stadtmüller, Stephen Wiggins, Pengfei Yao
This book series provides scientists and engineers with useful works in applied, computational and nonlinear mathematics and mechanics. The series focuses thematically on areas of interdisciplinary interest, particularly those based in nonlinear science. Volumes address modeling and use modern computational techniques. Contemporary problems and solutions are targeted throughout.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,80 gastos de envío desde Italia a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 79d5a1a1eb65300dd8b56fb1f5bc8867
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. 320 pp. Englisch. Nº de ref. del artículo: 9780128114261
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 540. Nº de ref. del artículo: B9780128114261
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 310 pages. 9.00x6.00x1.00 inches. In Stock. Nº de ref. del artículo: __0128114266
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations a. Nº de ref. del artículo: 594362674
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. Nº de ref. del artículo: 9780128114261
Cantidad disponible: 2 disponibles