Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats.
"Sinopsis" puede pertenecer a otra edición de este libro.
O.A. Akanbi received his B. Sc. (Hons, Information Technology – Software Engineering) from Kuala Lumpur Metropolitan University, Malaysia, M. Sc. in Information Security from University Teknologi Malaysia (UTM), and he is presently a graduate student in Computer Science at Texas Tech University His area of research is in CyberSecurity.
Dr. Iraj Sadegh Amiri received his B. Sc (Applied Physics) from Public University of Urmia, Iran in 2001 and a gold medalist M. Sc. in optics from University Technology Malaysia (UTM), in 2009. He was awarded a PhD degree in photonics in Jan 2014. He has published well over 350 academic publications since the 2012s in optical soliton communications, laser physics, photonics, optics and nanotechnology engineering. Currently he is a senior lecturer in University of Malaysia (UM), Kuala Lumpur, Malaysia.
E. Fazeldehkordi received her Associate’s Degree in Computer Hardware from the University of Science and Technology, Tehran, Iran, B. Sc (Electrical Engineering-Electronics) from Azad University of Tafresh, Iran, and M. Sc. in Information Security from Universiti Teknologi Malaysia (UTM). She currently conducts research in information security and has recently published her research on Mobile Ad Hoc Network Security using CreateSpace.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 24938dbbe14d931a19fa30fff7ab8454
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 100 pages. 8.75x6.00x0.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0128029277
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-ELS-9780128029275
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 100. Nº de ref. del artículo: 356259644
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 23068819-n
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 100. Nº de ref. del artículo: 26357279971
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 212. Nº de ref. del artículo: B9780128029275
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 23068819
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 100. Nº de ref. del artículo: 18357279977
Cantidad disponible: 3 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. Englisch. Nº de ref. del artículo: 9780128029275
Cantidad disponible: 2 disponibles