Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/
"Sinopsis" puede pertenecer a otra edición de este libro.
Jung W. Suh is a senior algorithm engineer and research scientist at KLA-Tencor. Dr. Suh received his Ph.D. from Virginia Tech in 2007 for his 3D medical image processing work. He was involved in the development of MPEG-4 and Digital Mobile Broadcasting (DMB) systems in Samsung Electronics. He was a senior scientist at HeartFlow, Inc., prior to joining KLA-Tencor. His research interests are in the fields of biomedical image processing, pattern recognition, machine learning and image/video compression. He has more than 30 journal and conference papers and 6 patents.
Youngmin Kim is a staff software engineer at Life Technologies where he has been programming in the area that requires real-time image acquisition and high-throughput image analysis. His previous works involved designing and developing software for automated microscopy and integrating imaging algorithms for real time analysis. He received his BS and MS from the University of Illinois at Urbana-Champaign in electrical engineering. Since then he developed 3D medical software at Samsung and led a software team at the startup company, prior to joining Life Technologies.
Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it.Accelerating MATLAB with GPUs offers a primer on bridging this gap.
Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,75 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Biblio Pursuit, Lenhartsville, PA, Estados Unidos de America
Soft cover. Condición: Fine. 1st Edition. First Edition. A fine copy! No Marks, No Underlining, No Highlighting. Nº de ref. del artículo: 057753
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 258 pp. Englisch. Nº de ref. del artículo: 9780124080805
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-ELS-9780124080805
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 258 pages. 9.00x6.00x0.50 inches. In Stock. Nº de ref. del artículo: __0124080804
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 258. Nº de ref. del artículo: 53946681
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 439. Nº de ref. del artículo: B9780124080805
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Nº de ref. del artículo: 9780124080805
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, this title. Nº de ref. del artículo: 5891532
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 258. Nº de ref. del artículo: 2654564582
Cantidad disponible: 3 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 258. Nº de ref. del artículo: 1854564588
Cantidad disponible: 3 disponibles