Ricci Flow and the Poincare Conjecture

Morgan, John/ Tian, Gang

Editorial: Amer Mathematical Society, 2007
ISBN 10: 0821843281 / ISBN 13: 9780821843284
Usado / Hardcover / Cantidad: 0
Disponible en otras librerías
Ver todos  los ejemplares de este libro

Sobre el libro

Lamentablemente este ejemplar en específico ya no está disponible. A continuación, le mostramos una lista de copias similares.

Descripción:

reprint edition. 521 pages. 10.00x7.25x1.25 inches. In Stock. N° de ref. de la librería

Sobre este título:

Valoración del libro brindada por Goodreads:
4,67 valoración promedio
(3 valoraciones)

Sinopsis: For over 100 years the Poincaré Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. In 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincaré Conjecture in the affirmative. This book provides full details of a complete proof of the Poincaré Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincaré Conjecture and the closely related 3-dimensional spherical space-form conjecture are then immediate. The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincaré Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. In addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Review: "The comprehensive and carefully detailed nature of the text makes this book an invaluable resource for any mathematician who wants to understand the technical nuts and bolts of the proof, while the introductory chapter provides an excellent conceptual overview of the entire argument." ---- Mathematical Reviews

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Ricci Flow and the Poincare Conjecture
Editorial: Amer Mathematical Society
Año de publicación: 2007
Encuadernación: Hardcover
Condición del libro: Brand New

Los mejores resultados en AbeBooks

1.

John Morgan, Gang Tian
Editorial: American Mathematical Society
ISBN 10: 0821843281 ISBN 13: 9780821843284
Usado Tapa dura Cantidad: 1
Librería
Powell's Bookstores Chicago, ABAA
(Chicago, IL, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society. Estado de conservación: Used - Very Good. 2007. Cloth, no dj. Lg 8vo. Minor shelf wear. Nº de ref. de la librería S67778

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar usado
EUR 40,37
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,34
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

John Morgan
Editorial: American Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Cantidad: 3
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, 2007. HRD. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería CE-9780821843284

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 60,83
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,14
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

John Morgan, Gang Tian
Editorial: American Mathematical Society, United States (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2007. Hardback. Estado de conservación: New. Reprint. Language: English . Brand New Book. For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute s seven Millennium Prize Problems. In 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman s three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton s work. The second part starts with Perelman s length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation.The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman s third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjecture are then immediate. The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston s Geometrization Conjecture. Thurston s Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. In addition, the fourth part is a much-expanded version of Perelman s third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA). Nº de ref. de la librería AAN9780821843284

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 68,62
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

John Morgan, Gang Tian
Editorial: American Mathematical Society, United States (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2007. Hardback. Estado de conservación: New. Reprint. Language: English . Brand New Book. For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute s seven Millennium Prize Problems. In 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman s three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton s work. The second part starts with Perelman s length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation.The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman s third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjecture are then immediate. The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston s Geometrization Conjecture. Thurston s Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. In addition, the fourth part is a much-expanded version of Perelman s third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA). Nº de ref. de la librería AAN9780821843284

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 73,10
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

John Morgan
Editorial: American Mathematical Society
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Tapa dura Cantidad: 3
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society. Hardcover. Estado de conservación: New. New copy - Usually dispatched within 2 working days. Nº de ref. de la librería B9780821843284

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 73,04
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,82
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Gang Tian, John Morgan
Editorial: American Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Usado Tapa dura Cantidad: 1
Librería
HPB-Dallas
(Dallas, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2007. Hardcover. Estado de conservación: Good. Item may show signs of shelf wear. Pages may include limited notes and highlighting. Includes supplemental or companion materials if applicable. Access codes may or may not work. Connecting readers since 1972. Customer service is our top priority. Nº de ref. de la librería mon0001141406

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar usado
EUR 74,35
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,33
A Estados Unidos de America
Destinos, gastos y plazos de envío

7.

John Morgan, Gang Tian
Editorial: American Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2007. Hardcover. Estado de conservación: New. Reprint. Nº de ref. de la librería DADAX0821843281

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 81,33
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,50
A Estados Unidos de America
Destinos, gastos y plazos de envío

8.

John Morgan, Gang Tian
Editorial: American Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Usado Tapa dura Cantidad: 2
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2007. Hardcover. Estado de conservación: Very Good. Great condition with minimal wear, aging, or shelf wear. Nº de ref. de la librería P020821843281

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar usado
EUR 89,08
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 1,66
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

John Morgan, Gang Tian
Editorial: American Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Usado Tapa dura Cantidad: 2
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2007. Hardcover. Estado de conservación: Like New. Almost new condition. Nº de ref. de la librería P010821843281

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar usado
EUR 91,53
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 1,66
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Morgan, John/ Tian, Gang
Editorial: Amer Mathematical Society (2007)
ISBN 10: 0821843281 ISBN 13: 9780821843284
Nuevos Tapa dura Cantidad: 2
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción Amer Mathematical Society, 2007. Hardcover. Estado de conservación: Brand New. reprint edition. 521 pages. 10.00x7.25x1.25 inches. In Stock. Nº de ref. de la librería __0821843281

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 91,22
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,76
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda