Statistical Tools for Nonlinear Regression presents methods for analyzing data. It has been expanded to include binomial, multinomial and Poisson non-linear models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds.
The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-Plus and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely,
Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets.
Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure.
This book is aimed at scientists who are not familiar with statistical theory, but have a basic knowledge of statistical concepts. It includes methods based on classical nonlinear regression theory and more modern methods, such as bootstrap, which have proved effective in practice. The additional chapters of the second edition assume some practical experience in data analysis using generalized linear models. The book will be of interest both for practitioners as a guide and a reference book, and for students, as a tutorial book.
Sylvie Huet and Emmanuel Jolivet are senior researchers and Annie Bouvier is computing engineer at INRA, National Institute of Agronomical Research, France; Marie-Anne Poursat is associate professor of statistics at the University Paris XI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,38 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,63 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Once Upon A Time Books, Siloam Springs, AR, Estados Unidos de America
Hardcover. Condición: Good. This is a used book in good condition and may show some signs of use or wear . This is a used book in good condition and may show some signs of use or wear . Nº de ref. del artículo: mon0001142857
Cantidad disponible: 1 disponibles
Librería: Magus Books Seattle, Seattle, WA, Estados Unidos de America
Hardcover. Condición: VG. used hardcover copy in illustrated boards, no jacket, as issued. light shelfwear, corners perhaps slightly bumped. pages and binding are clean, straight and tight. there are no marks to the text or other serious flaws. Nº de ref. del artículo: 1310797
Cantidad disponible: 1 disponibles
Librería: Lily of the Valley Books, Waynesboro, VA, Estados Unidos de America
Hardcover. Condición: Very Good. No Jacket. 2nd Edition. Book is gently used with only minor wear. Spine and bottom corner are bumped. Tightly bound copy with clean interior having no markings, writing, underlining, or highlighting in margins or text block. Inv. # 10968. Nº de ref. del artículo: 010968
Cantidad disponible: 1 disponibles
Librería: killarneybooks, Inagh, CLARE, Irlanda
Hardcover. Condición: Very Good. 2nd Edition. Hardcover, xiv + 232 pages, second ed., NOT ex-library. Printed in the USA. Mild internal creasing, else very good. Book is clean and bright with unmarked text and firm binding, free of inscriptions and stamps. Issued without a dust jacket. -- Contents: 1 Nonlinear Regression Model and Parameter Estimation [Examples; Parametric Nonlinear Regression Model; Estimation; Applications (Pasture Regrowth; Cortisol Assay; ELISA Test; Ovocytes; Isomerization); Conclusion and References; Using nls2] 2 Accuracy of Estimators, Confidence Intervals and Tests [Examples; Problem Formulation; Solutions; Applications] 3 Variance Estimation [Examples; Parametric Modeling of the Variance; Estimation (Maximum Likelihood; Quasi-Likelihood; Three-Step Estimation); Tests and Confidence Regions; Applications (Growth of Winter Wheat Tillers; Solubility of Peptides in Trichloacetic Acid Solutions] 4 Diagnostics of Model Misspecification [Problem Formulation; Diagnostics of Model Misspecifications with Graphics; Diagnostics of Model Misspecifications with Tests; Numerical Troubles During the Estimation Process: Peptides Example; Peptides Example: Concluded] 5 Calibration and Prediction [Examples; Problem Formulation; Confidence Intervals; Applications] 6 Binomial Nonlinear Models [Examples (Assay of an Insecticide with a Synergist: A Binomial Nonlinear Model; Vaso-Constriction in the Skin of the Digits: The Case of Binary Response Data; Mortality of Confused Flour Beetles: The Choice of a Link Function in a Binomial Linear Model; Mortality of Confused Flour Beetles 2: Survival Analysis Using a Binomial Nonlinear Model; Germination of Orobranche: Overdispersion); Parametric Binomial Nonlinear Model; Overdispersion, Underdispersion; Estimation; Tests and Confidence Regions; Applications] 7 Multinomial and Poisson Nonlinear Models [Multinomial Model (Pneumoconiosis among Coal Miners: An Example of Multicategory Response Data; A Cheese Tasting Experiment; Parametric Multinomial Model; Estimation in the Multinomial Model; Tests and Confidence Intervals; Pneumoconiosis among Coal Miners: The Multinomial Logit Model; Cheese Tasting Example: Model Based on Cumulative Probabilities; Using nls2); Poisson Model]; References; Index -- Statistical Tools for Nonlinear Regression, Second Edition, presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure. Nº de ref. del artículo: 005884
Cantidad disponible: 1 disponibles
Librería: GoldBooks, Denver, CO, Estados Unidos de America
Condición: new. Nº de ref. del artículo: 22D87_38_0387400818
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580172253
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 1791971-n
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780387400815
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 1791971
Cantidad disponible: Más de 20 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:9780387400815. Nº de ref. del artículo: 8236763
Cantidad disponible: 1 disponibles