Pour sa thèse qu'il exposa dès 1797, Gauss a fourni une démonstration difficile et topologiquement incomplète du théorème qui affirme l'existence d'au moins une racine complexe à tout polynôme réel non constant : tel se présente le théorème fondamental de l'algèbre. Gauss ne supposait pas l'existence des entités qui avaient été imaginées par Descartes pour permettre la décomposition de tout polynôme en facteurs du premier degré. En 1795, Laplace avait en effet rigoureusement démontré que ces « imaginaires », une fois supposés, se réduisaient aux nombres complexes, lesquels accaparaient le nom de « quantités imaginaires ». Une dizaine d'années après, Argand fournissait une démonstration aisée du théorème fondamental. Des démonstrations inventives différentes se succédèrent, de Gauss encore, de Cauchy, de Liouville, etc., et trouvèrent une place variable dans les grands traités classiques des mathématiques européennes jusqu'à la fin du XIXe siècle, où l'analyse réelle restait séparée de l'analyse complexe. C'est cette période d'un siècle que le présent volume inventorie, donnant à lire en français les textes correspondants, explicitant le contexte intellectuel des preuves, mais réservant pour un prochain et dernier volume les explications algébriques à la façon de Galois et les preuves données au XXe siècle.
Reseña del editor:Pour sa thèse qu'il débuta en 1797, Gauss a fourni une démonstration - difficile et topologiquement incomplète - du théorème qui arme l'existence d'au moins une racine complexe à tout polynôme réel non constant. Gauss ne supposait pas l'existence des entités qui avaient été imaginées par Descartes pour permettre la décomposition de tout polynôme en facteurs du premier degré. Laplace en 1795 avait en effet rigoureusement démontré que ces " imaginaires ", une fois supposées, se réduisaient aux nombres complexes, lesquels accaparaient le nom de " quantités imaginaires ". Une dizaine d'années après, en inventant des techniques de l'analyse instituant le plan topologique et aussi par la représentation géométrique des nombres complexes, s'inspirant par ailleurs de Legendre et d'un début de calcul des fonctions dérivables d'une variable complexe, Argand fournissait une démonstration aisée du théorème fondamental. Des démonstrations inventives différentes se succédèrent, de Gauss, de Cauchy, de Liouville, etc. , et trouvèrent une place variable dans les grands traités classiques des mathématiques européennes jusqu'à la fin du XIXe siècle, où l'analyse complexe restait séparée de l'analyse complexe. C'est cette période d'un siècle que le présent volume inventorie, en explicitant le contexte intellectuel des preuves, mais réservant pour un prochain et dernier volume les explications algébriques à la façon de Galois et les preuves données au XXe siècle.
"Sobre este título" puede pertenecer a otra edición de este libro.
Gastos de envío:
EUR 5,99
De Francia a Estados Unidos de America
Descripción Condición: 1. EXPEDITION SOUS 48 H EN SUIVI LA POSTE / EMBALLAGE BULLEPACK. Nº de ref. del artículo: TH 86 395
Descripción HERMANN, 2013. Paperback. HERMANN. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M02705683178-V