Machine Learning for High-Risk Applications: Approaches to Responsible AI

Hall, Patrick; Curtis, James; Pandey, Parul

ISBN 10: 1098102436 ISBN 13: 9781098102432
Editorial: O'Reilly Media, 2023
Nuevos Soft cover

Librería: BestAroundDeals, Grand Rapids, MI, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 4 de junio de 2020

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

N° de ref. del artículo ABE-1681810708582

Denunciar este artículo

Sinopsis:

The past decade has witnessed the broad adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight in their widespread implementation has resulted in some incidents and harmful outcomes that could have been avoided with proper risk management. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks.

This book describes approaches to responsible AI--a holistic framework for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science. Authors Patrick Hall, James Curtis, and Parul Pandey created this guide for data scientists who want to improve real-world AI/ML system outcomes for organizations, consumers, and the public.

  • Learn technical approaches for responsible AI across explainability, model validation and debugging, bias management, data privacy, and ML security
  • Learn how to create a successful and impactful AI risk management practice
  • Get a basic guide to existing standards, laws, and assessments for adopting AI technologies, including the new NIST AI Risk Management Framework
  • Engage with interactive resources on GitHub and Colab

Acerca del autor: Patrick Hall is principal scientist at bnh.ai, a Cc.C.-based law firm focused on AI and data analytics, and visiting faculty at the George Washington University School of Business (GWSB). James Curtis is a quantitative researcher focused on US power markets and renewable resource asset management. Parul Pandey is a Machine Learning Engineer at Weights & Biases.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Machine Learning for High-Risk Applications:...
Editorial: O'Reilly Media
Año de publicación: 2023
Encuadernación: Soft cover
Condición: New
Edición: 1st Edition

Los mejores resultados en AbeBooks

Imagen del vendedor

Patrick Hall, James Curtis, Parul Pandey
Publicado por O'Reilly Media, US, 2023
ISBN 10: 1098102436 ISBN 13: 9781098102432
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Nº de ref. del artículo: LU-9781098102432

Contactar al vendedor

Comprar nuevo

EUR 60,66
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Patrick Hall, James Curtis, Parul Pandey
Publicado por O'Reilly Media, US, 2023
ISBN 10: 1098102436 ISBN 13: 9781098102432
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Nº de ref. del artículo: LU-9781098102432

Contactar al vendedor

Comprar nuevo

EUR 62,53
Gastos de envío: EUR 43,17
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Patrick Hall, James Curtis, Parul Pandey
Publicado por O'Reilly Media, US, 2023
ISBN 10: 1098102436 ISBN 13: 9781098102432
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Nº de ref. del artículo: LU-9781098102432

Contactar al vendedor

Comprar nuevo

EUR 76,02
Gastos de envío: EUR 73,79
De Reino Unido a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Patrick Hall, James Curtis, Parul Pandey
Publicado por O'Reilly Media, US, 2023
ISBN 10: 1098102436 ISBN 13: 9781098102432
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Nº de ref. del artículo: LU-9781098102432

Contactar al vendedor

Comprar nuevo

EUR 84,10
Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito