Data Analysis Using Regression and Multilevel/Hierarchical Models

Andrew Gelman

ISBN 10: 052168689X ISBN 13: 9780521686891
Editorial: Cambridge University Press, 2006
Usado paperback

Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 10 de noviembre de 2017

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. Ships same or next business day. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). N° de ref. del artículo 000854440U

Denunciar este artículo

Sinopsis:

Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.

Acerca de los autores: Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).

Jennifer Hill is Assistant Professor of Public Affairs in the Department of International and Public Affairs at Columbia University. She has co-authored articles that have appeared in the Journal of the American Statistical Association, American Political Science Review, American Journal of Public Health, Developmental Psychology, the Economic Journal and the Journal of Policy Analysis and Management, among others.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Data Analysis Using Regression and ...
Editorial: Cambridge University Press
Año de publicación: 2006
Encuadernación: paperback
Condición: Good
Edición: 1st Edition.

Los mejores resultados en AbeBooks

Imagen de archivo

Gelman Andrew, Hill Jennifer
Publicado por Cambridge University Press, 2009
ISBN 10: 052168689X ISBN 13: 9780521686891
Antiguo o usado Couverture souple Original o primera edición

Librería: La Bouquinerie des Antres, Delémont, Suiza

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Couverture souple. Condición: very good. 1ère Édition. 11th printing, 625 p., analytical methods for social research. 4x18x26 cm, 1200 gr. réf. GFS230. Nº de ref. del artículo: 001377

Contactar al vendedor

Comprar usado

EUR 40,00
EUR 12,00 shipping
Se envía de Suiza a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Nuevo Paperback Original o primera edición
Impresión bajo demanda

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521686891

Contactar al vendedor

Comprar nuevo

EUR 76,82
EUR 42,14 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Andrew Gelman
Publicado por Cambridge University Press, 2006
ISBN 10: 052168689X ISBN 13: 9780521686891
Nuevo Tapa blanda Original o primera edición

Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 2006. 1st Edition. paperback. This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models. Series Editor(s): Alvarez, R. Michael; Beck, Nathaniel L.; Wu, Lawrence L. Series: Analytical Methods for Social Research. Num Pages: 648 pages, 160 exercises. BIC Classification: JHBC; PBK. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 254 x 179 x 37. Weight in Grams: 1120. Series: Analytical Methods for Social Research. 648 pages, 160 exercises. For the applied researcher performing data analysis using linear and nonlinear regression and multilevel models. Cateogry: (P) Professional & Vocational; (U) Tertiary Education (US: College). BIC Classification: JHBC; PBK. Dimension: 254 x 179 x 37. Weight: 1132. Series Editor(s) :Alvarez, R. Michael; Beck, Nathaniel L.; Wu, Lawrence L. . . . . . Nº de ref. del artículo: V9780521686891

Contactar al vendedor

Comprar nuevo

EUR 78,27
EUR 10,50 shipping
Se envía de Irlanda a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Nuevo Paperback Original o primera edición
Impresión bajo demanda

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521686891

Contactar al vendedor

Comprar nuevo

EUR 86,49
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew Gelman
ISBN 10: 052168689X ISBN 13: 9780521686891
Nuevo Paperback Original o primera edición
Impresión bajo demanda

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: / gelman/arm/ Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: ~gelman/arm/ This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780521686891

Contactar al vendedor

Comprar nuevo

EUR 105,35
EUR 31,51 shipping
Se envía de Australia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito