Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 113,74
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 270.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 118,82
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 270.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 120,66
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 270.
Publicado por Elsevier Science Publishing Co Inc, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 147,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 480.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 161,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 164,22
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 181,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 183,02
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 118,91
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: new. Questo è un articolo print on demand.
Publicado por Elsevier Science & Technology, Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 132,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Englisch.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 135,17
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 288 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand.
Publicado por Elsevier Science & Technology|Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 130,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep gener.
Publicado por Elsevier Science & Technology, Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 146,74
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.