Librería: Midtown Scholar Bookstore, Harrisburg, PA, Estados Unidos de America
EUR 20,32
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. No dust jacket. Very Good hardcover with light shelfwear - NICE! Standard-sized.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 43,34
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 247 1st Edition.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 39,75
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 247.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 42,08
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 247.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,16
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 54,43
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 51,02
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 59,26
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 63,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 65,77
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 65,77
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,79
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Birkh�user 2014-08-23, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,58
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 75,24
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Idioma: Inglés
Publicado por Basel, Birkhäuser Verlag, 1988
ISBN 10: 3764322330 ISBN 13: 9783764322335
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 35,90
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02670 3764322330 Sprache: Englisch Gewicht in Gramm: 550.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 72,71
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 260.
Idioma: Inglés
Publicado por Basel, Boston, Stuttgart, Birkhäuser, 1988
ISBN 10: 3764322330 ISBN 13: 9783764322335
Librería: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Alemania
EUR 45,00
Cantidad disponible: 1 disponibles
Añadir al carrito247 S., 3764322330 Sprache: Englisch Gewicht in Gramm: 620 Groß 8°, Original-Pappband (Hardcover), Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit leichten Rückständen vom Rückenschild, Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar,
Librería: Revaluation Books, Exeter, Reino Unido
EUR 76,56
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 260 pages. 9.70x6.70x0.70 inches. In Stock.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 110,27
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Buchpark, Trebbin, Alemania
EUR 49,93
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Librería: Buchpark, Trebbin, Alemania
EUR 49,93
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Idioma: Inglés
Publicado por Springer, Basel, Birkhäuser Basel, Birkhäuser Aug 2014, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n. 247 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 72,61
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 260 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 76,50
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 260.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, th.
Idioma: Inglés
Publicado por Birkhäuser, Birkhäuser Aug 2014, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 50,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Topics in Interpolation Theory of Rational Matrix-valued Functions | I. Gohberg | Taschenbuch | ix | Englisch | 2014 | Springer | EAN 9783034854719 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.