Librería: Midtown Scholar Bookstore, Harrisburg, PA, Estados Unidos de America
EUR 21,07
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. No dust jacket. Very Good hardcover with light shelfwear - NICE! Standard-sized.
Publicado por Basel, Birkhäuser Verlag, 1988
ISBN 10: 3764322330 ISBN 13: 9783764322335
Idioma: Inglés
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 35,90
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02670 3764322330 Sprache: Englisch Gewicht in Gramm: 550.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,92
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 67,34
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 67,34
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Birkh�user 2014-08-23, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 55,83
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 260.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 80,10
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Publicado por Basel, Boston, Stuttgart, Birkhäuser, 1988
ISBN 10: 3764322330 ISBN 13: 9783764322335
Idioma: Inglés
Librería: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Alemania
EUR 36,00
Cantidad disponible: 1 disponibles
Añadir al carrito247 S., 3764322330 Sprache: Englisch Gewicht in Gramm: 620 Groß 8°, Original-Pappband (Hardcover), Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit leichten Rückständen vom Rückenschild, Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar,
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 88,84
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 247 1st Edition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 78,60
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 260 pages. 9.70x6.70x0.70 inches. In Stock.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 92,03
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 247.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 92,90
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 247.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.
Librería: Buchpark, Trebbin, Alemania
EUR 55,48
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Buchpark, Trebbin, Alemania
EUR 55,48
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Publicado por Springer, Basel, Birkhäuser Basel, Birkhäuser Aug 2014, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n. 247 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 77,45
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 260 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 78,47
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 260.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, th.
Publicado por Birkhäuser, Birkhäuser Aug 2014, 2014
ISBN 10: 3034854714 ISBN 13: 9783034854719
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , ' ' Z/ are the given zeros with given multiplicates nl, ' ' n / and Wb' ' W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch.