EUR 50,69
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 57,85
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 51,10
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: NEW.
Publicado por O'Reilly Media 1/31/2023, 2023
ISBN 10: 1098121228 ISBN 13: 9781098121228
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 51,95
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Python Data Science Handbook: Essential Tools for Working with Data 2.15. Book.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,17
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 58,47
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 62,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 49,46
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Marlton Books, Bridgeton, NJ, Estados Unidos de America
EUR 32,96
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Acceptable. Readable, but has significant damage / tears. Has a remainder mark. paperback Used - Acceptable 2023.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 64,69
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: New. 2022. 2nd Edition. Paperback. . . . . .
EUR 65,46
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 50,68
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 42,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
EUR 42,23
Convertir monedaCantidad disponible: 13 disponibles
Añadir al carritoCondición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 55,61
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 59,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 76,41
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 69,79
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 79,76
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: New. 2022. 2nd Edition. Paperback. . . . . . Books ship from the US and Ireland.
Publicado por O'reilly Media Jan 2023, 2023
ISBN 10: 1098121228 ISBN 13: 9781098121228
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 70,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - 'Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all--IPython, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.'--Publisher marketing.
EUR 82,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Librería: moluna, Greven, Alemania
EUR 68,34
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: New. Über den AutorJake VanderPlas is a software engineer at Google Research, working on tools that support data-intensive research. He creates and develops Python tools for use in data-intensive science, including packages like Scikit-L.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 83,68
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Oreilly & Associates Inc, 2023
ISBN 10: 1098121228 ISBN 13: 9781098121228
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 82,45
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2nd edition. 550 pages. 9.19x7.00x1.19 inches. In Stock.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 85,55
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Goodwill Books, Hillsboro, OR, Estados Unidos de America
EUR 39,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Acceptable. Fairly worn, but readable and intact. If applicable: Dust jacket, disc or access code may not be included.
Publicado por O'Reilly Media, Sebastopol, 2022
ISBN 10: 1098121228 ISBN 13: 9781098121228
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 74,88
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 48,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Publicado por O'Reilly Media, Sebastopol, 2022
ISBN 10: 1098121228 ISBN 13: 9781098121228
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 62,17
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how:IPython and Jupyter provide computational environments for scientists using PythonNumPy includes the ndarray for efficient storage and manipulation of dense data arraysPandas contains the DataFrame for efficient storage and manipulation of labeled/columnar dataMatplotlib includes capabilities for a flexible range of data visualizationsScikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 34,86
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!