Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 27,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.01.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 25,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 398.
EUR 23,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 398.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 33,66
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Bpb Publications 7/15/2022, 2022
ISBN 10: 9355512066 ISBN 13: 9789355512062
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 33,85
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Practical Deep Reinforcement Learning with Python: Concise Implementation of Algorithms, Simplified Maths, and Effective Use of TensorFlow and PyTorch 1.51. Book.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 30,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Russell Books, Victoria, BC, Canada
EUR 36,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritopaperback. Condición: New. Special order direct from the distributor.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 36,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por BPB Publications 2022-07, 2022
ISBN 10: 9355512066 ISBN 13: 9789355512062
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 33,19
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
EUR 41,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 24,58
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 398.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 40,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 37,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 49,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Introducing Practical Smart Agents Development using Python, PyTorch, and TensorFlow KEY FEATURES ¿ Exposure to well-known RL techniques, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical. ¿ Hands-on experience with TensorFlow and PyTorch on Reinforcement Learning projects. ¿ Everything is concise, up-to-date, and visually explained with simplified mathematics. DESCRIPTION Reinforcement learning is a fascinating branch of AI that differs from standard machine learning in several ways. Adaptation and learning in an unpredictable environment is the part of this project. There are numerous real-world applications for reinforcement learning these days, including medical, gambling, human imitation activity, and robotics. This book introduces readers to reinforcement learning from a pragmatic point of view. The book does involve mathematics, but it does not attempt to overburden the reader, who is a beginner in the field of reinforcement learning. The book brings a lot of innovative methods to the reader's attention in much practical learning, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical methods. While you understand these techniques in detail, the book also provides a real implementation of these methods and techniques using the power of TensorFlow and PyTorch. The book covers some enticing projects that show the power of reinforcement learning, and not to mention that everything is concise, up-to-date, and visually explained. After finishing this book, the reader will have a thorough, intuitive understanding of modern reinforcement learning and its applications, which will tremendously aid them in delving into the interesting field of reinforcement learning. WHAT YOU WILL LEARN ¿ Familiarize yourself with the fundamentals of Reinforcement Learning and Deep Reinforcement Learning. ¿ Make use of Python and Gym framework to model an external environment. ¿ Apply classical Q-learning, Monte Carlo, Policy Gradient, and Thompson sampling techniques. ¿ Explore TensorFlow and PyTorch to practice the fundamentals of deep reinforcement learning. ¿ Design a smart agent for a particular problem using a specific technique. WHO THIS BOOK IS FOR This book is for machine learning engineers, deep learning fanatics, AI software developers, data scientists, and other data professionals eager to learn and apply Reinforcement Learning to ongoing projects. No specialized knowledge of machine learning is necessary; however, proficiency in Python is desired.