Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 204,84
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 205,09
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 206,71
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 216,36
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 216,35
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 224,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 248,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 183,10
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Multilevel Modeling of Social Problems | A Causal Perspective | Robert B. Smith | Taschenbuch | xxxix | Englisch | 2014 | Springer Netherland | EAN 9789401784313 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 247,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 162,03
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Publicado por Springer Netherlands, Springer Netherlands Mär 2011, 2011
ISBN 10: 9048198542 ISBN 13: 9789048198542
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 213,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models.The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:¿Develops procedures for studying social, economic, and human development.¿ Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.¿ Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.¿ Selects appropriate covariance structures for generalized linear mixed models.¿ Applies difference-in-differences study designs in the multilevel modeling of intervention studies.¿Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.¿ Uses the Kenward-Rogers correction in mixed models of repeated measures.¿ Explicates differences between associational and causal analysis of multilevel models.¿ Consolidates research findings via meta-analysis and methodological critique.¿Develops criteria for assessing a study's validity and zone ofcausality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 576 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 290,73
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Netherlands, Springer Netherlands, 2014
ISBN 10: 9401784310 ISBN 13: 9789401784313
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 222,20
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models. The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:-Develops procedures for studying social, economic, and human development.- Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.- Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.- Selects appropriate covariance structures for generalized linear mixed models.- Applies difference-in-differences study designs in the multilevel modeling of intervention studies.-Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.- Uses the Kenward-Rogers correction in mixed models of repeated measures.- Explicates differences between associational and causal analysis of multilevel models.- Consolidates research findings via meta-analysis and methodological critique.-Develops criteria for assessing a study's validity and zone ofcausality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.
Publicado por Springer Netherlands, Springer Netherlands, 2011
ISBN 10: 9048198542 ISBN 13: 9789048198542
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 222,20
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models. The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:-Develops procedures for studying social, economic, and human development.- Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.- Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.- Selects appropriate covariance structures for generalized linear mixed models.- Applies difference-in-differences study designs in the multilevel modeling of intervention studies.-Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.- Uses the Kenward-Rogers correction in mixed models of repeated measures.- Explicates differences between associational and causal analysis of multilevel models.- Consolidates research findings via meta-analysis and methodological critique.-Develops criteria for assessing a study's validity and zone ofcausality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 287,90
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
EUR 306,30
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 535 pages. 9.25x6.25x1.25 inches. In Stock.
Librería: moluna, Greven, Alemania
EUR 180,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Illustrates the usefulness of multilevel modeling for the quantification of effects and causal inference.Each core chapter begins with a pressing social problem that motivates theoretical analysis, gathering of relevant data and application of appropriate s.
Librería: moluna, Greven, Alemania
EUR 180,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Illustrates the usefulness of multilevel modeling for the quantification of effects and causal inference.Each core chapter begins with a pressing social problem that motivates theoretical analysis, gathering of relevant data and application of appropriate s.
Publicado por Springer Netherlands Nov 2014, 2014
ISBN 10: 9401784310 ISBN 13: 9789401784313
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 213,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models.The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:-Develops procedures for studying social, economic, and human development.- Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.- Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.- Selects appropriate covariance structures for generalized linear mixed models.- Applies difference-in-differences study designs in the multilevel modeling of intervention studies.-Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.- Uses the Kenward-Rogers correction in mixed models of repeated measures.- Explicates differences between associational and causal analysis of multilevel models.- Consolidates research findings via meta-analysis and methodological critique.-Develops criteria for assessing a study's validity and zone of causality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts. 576 pp. Englisch.
Publicado por Springer Netherlands Mrz 2011, 2011
ISBN 10: 9048198542 ISBN 13: 9789048198542
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 213,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models.The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:-Develops procedures for studying social, economic, and human development.- Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.- Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.- Selects appropriate covariance structures for generalized linear mixed models.- Applies difference-in-differences study designs in the multilevel modeling of intervention studies.-Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.- Uses the Kenward-Rogers correction in mixed models of repeated measures.- Explicates differences between associational and causal analysis of multilevel models.- Consolidates research findings via meta-analysis and methodological critique.-Develops criteria for assessing a study's validity and zone of causality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts. 576 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 187,40
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Multilevel Modeling of Social Problems | A Causal Perspective | Robert B. Smith | Buch | xxxix | Englisch | 2011 | Springer | EAN 9789048198542 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Publicado por Springer Netherlands, Springer Netherlands Nov 2014, 2014
ISBN 10: 9401784310 ISBN 13: 9789401784313
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 213,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Uniquely focusing on intersections of social problems, multilevel statistical modeling, and causality; the substantively and methodologically integrated chapters of this book clarify basic strategies for developing and testing multilevel linear models (MLMs), and drawing casual inferences from such models. These models are also referred to as hierarchical linear models (HLMs) or mixed models.The statistical modeling of multilevel data structures enables researchers to combine contextual and longitudinal analyses appropriately. But researchers working on social problems seldom apply these methods, even though the topics they are studying and the empirical data call for their use. By applying multilevel modeling to hierarchical data structures, this book illustrates how the use of these methods can facilitate social problems research and the formulation of social policies. It gives the reader access to working data sets, computer code, and analytic techniques, while at the same time carefully discussing issues of causality in such models.This book innovatively:¿Develops procedures for studying social, economic, and human development.¿ Uses typologies to group (i.e., classify or nest) the level of random macro-level factors.¿ Estimates models with Poisson, binomial, and Gaussian end points using SAS's generalized linear mixed models (GLIMMIX) procedure.¿ Selects appropriate covariance structures for generalized linear mixed models.¿ Applies difference-in-differences study designs in the multilevel modeling of intervention studies.¿Calculates propensity scores by applying Firth logistic regression to Goldberger-corrected data.¿ Uses the Kenward-Rogers correction in mixed models of repeated measures.¿ Explicates differences between associational and causal analysis of multilevel models.¿ Consolidates research findings via meta-analysis and methodological critique.¿Develops criteria for assessing a study's validity and zone ofcausality.Because of its social problems focus, clarity of exposition, and use of state-of-the-art procedures; policy researchers, methodologists, and applied statisticians in the social sciences (specifically, sociology, social psychology, political science, education, and public health) will find this book of great interest. It can be used as a primary text in courses on multilevel modeling or as a primer for more advanced texts.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 576 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 312,65
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 315,07
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.