Publicado por Cambridge University Press 8/5/2021, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 24,36
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Modern Dimension Reduction. Book.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 21,98
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 28,65
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 25,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press 2021-07-31, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 22,26
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 39,01
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 29,78
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 45,54
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 20,49
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 75 pages. 9.02x5.98x0.20 inches. In Stock. This item is printed on demand.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 25,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 160.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 29,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the.
Publicado por Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 39,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Modern Dimension Reduction | Philip D. Waggoner | Taschenbuch | Kartoniert / Broschiert | Englisch | 2021 | Cambridge University Press | EAN 9781108986892 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.