Librería: SpringBooks, Berlin, Alemania
Original o primera edición
EUR 45,94
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: As New. 1. Auflage. from Germany, will be dispatched immediately.
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 80,80
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,66
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 109,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 111,34
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 134,40
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 132.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 139,32
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 149,15
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 148 pages. 9.25x6.10x0.34 inches. In Stock.
Publicado por Springer International Publishing, Springer International Publishing Jul 2019, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80¿s and includes the most recent results. It discusses open problems and outlines future directions for research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Publicado por Springer International Publishing, Springer International Publishing Aug 2020, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80¿s and includes the most recent results. It discusses open problems and outlines future directions for research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Publicado por Springer International Publishing, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
Publicado por Springer International Publishing, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
Publicado por Springer International Publishing Aug 2020, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research. 148 pp. Englisch.
Publicado por Springer International Publishing Jul 2019, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research. 148 pp. Englisch.
Publicado por Springer International Publishing, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reviews the main approaches to problems of model selection and error estimation Simplifies most of the technical aspects focusing on the applicability of the approachesPresents the intuitions behind the methods, the formalism, and practical al.
Publicado por Springer International Publishing, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reviews the main approaches to problems of model selection and error estimation Simplifies most of the technical aspects focusing on the applicability of the approachesPresents the intuitions behind the methods, the formalism, and practical al.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 144,07
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 132.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 148,43
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 145,65
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 132.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 149,83
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: preigu, Osnabrück, Alemania
EUR 96,40
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Model Selection and Error Estimation in a Nutshell | Luca Oneto | Buch | xiii | Englisch | 2019 | Springer | EAN 9783030243586 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.