Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 35,50
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Hands-On Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python 1. Book.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 40,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 33,18
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 39,35
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
EUR 31,82
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 45,76
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 46,53
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 53,64
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 242 pages. 10.00x7.00x0.50 inches. In Stock.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 66,86
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 61,34
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Apress, Apress Nov 2019, 2019
ISBN 10: 1484253728 ISBN 13: 9781484253724
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 58,84
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 256 pp. Englisch.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 32,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 35,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 54,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 543.
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intermediate user level|Introduces the popular Scikit-Learn library for machine learning algorithms in PythonProvides examples in Python that are made specifically for data scienceTeaches principles o.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 58,84
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine. All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complex machine learning algorithms. Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python. What You'll Learn Work with simple and complex datasets common to Scikit-LearnManipulate data into vectors and matrices for algorithmic processingBecome familiar with the Anaconda distribution used in data scienceApply machine learning with Classifiers, Regressors, and Dimensionality ReductionTune algorithms and find the best algorithms for each datasetLoad data from and save to CSV, JSON, Numpy, and Pandas formats Who This Book Is For The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book. 256 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine.All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complexmachine learning algorithms.Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python.What You'll LearnWork with simple and complex datasets common to Scikit-LearnManipulate data into vectors and matrices for algorithmic processingBecome familiar with the Anaconda distribution used in data scienceApply machine learning with Classifiers, Regressors, and Dimensionality ReductionTune algorithms and find the best algorithms for each datasetLoad data from and save to CSV, JSON, Numpy, and Pandas formatsWho This Book Is ForThe aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.