Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 60,09
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,30
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 68,63
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 64,59
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 476.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 72,58
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 476.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 62,17
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 68,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 71,60
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 476.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 68,70
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
EUR 91,64
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 89,86
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 68,71
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: Majestic Books, Hounslow, Reino Unido
EUR 92,69
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 101,75
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 89,73
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 94,08
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 476 pages. 10.00x7.01x1.10 inches. In Stock.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 111,88
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 100,97
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 440 pages. 10.00x7.00x1.25 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 103,00
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 110,58
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor & Francis Inc, United States, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
EUR 120,16
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation. Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs. Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apples Swift and Metal,) and the deep learning library cuDNN. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 104,20
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: moluna, Greven, Alemania
EUR 92,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Tolga Soyata is an associate professor in the Electrical and Computer Engineering department of SUNY Albany.GPU Parallel Program Development using CUDA teaches GPU programming by showing the diffe.
Idioma: Inglés
Publicado por Chapman And Hall/CRC Jun 2020, 2020
ISBN 10: 0367572249 ISBN 13: 9780367572242
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 59,60
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple's Swift and Metal,) and the deep learning library cuDNN. 478 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 56,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Tolga Soyata is an associate professor in the Electrical and Computer Engineering department of SUNY Albany.GPU Parallel Program Development using CUDA teaches GPU programming by showing th.
Idioma: Inglés
Publicado por Taylor & Francis, Chapman And Hall/CRC, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 89,40
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple's Swift and Metal,) and the deep learning library cuDNN. 476 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 69,33
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple's Swift and Metal,) and the deep learning library cuDNN.
Idioma: Inglés
Publicado por Taylor & Francis, Chapman And Hall/CRC, 2018
ISBN 10: 1498750753 ISBN 13: 9781498750752
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 103,11
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple's Swift and Metal,) and the deep learning library cuDNN.