Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
EUR 3,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Like New. Used - Like New. Book is new and unread but may have minor shelf wear. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 123,52
Usado desde EUR 8,62
Encuentre también Tapa dura
Publicado por Springer Berlin Heidelberg, 2019
ISBN 10: 3662568438 ISBN 13: 9783662568439
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 1: Learning and Approximation: Theoretical Foundations and Applications Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, inapproximability results, mechanism design, network design, packing and covering, paradigms for design and analysis of approxi- tion and online algorithms, randomization techniques, real-world applications, scheduling problems and so on. The past years have witnessed a large number of interesting applications using various techniques of Computational Intelligence such as rough sets, connectionist learning; fuzzy logic; evolutionary computing; artificial immune systems; swarm intelligence; reinforcement learning, intelligent multimedia processing etc. . In spite of numerous successful applications of C- putational Intelligence in business and industry, it is sometimes difficult to explain the performance of these techniques and algorithms from a theoretical perspective. Therefore, we encouraged authors to present original ideas dealing with the inc- poration of different mechanisms of Computational Intelligent dealing with Lea- ing and Approximation algorithms and underlying processes. This edited volume comprises 15 chapters, including an overview chapter, which provides an up-to-date and state-of-the art research on the application of Computational Intelligence for learning and approximation.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 118,98
Encuentre también Tapa blanda
Librería: Buchpark, Trebbin, Alemania
EUR 125,14
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 310 | Sprache: Englisch | Produktart: Bücher.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 156,75
Usado desde EUR 125,14
Encuentre también Tapa dura
Librería: Bookmonger.Ltd, HILLSIDE, NJ, Estados Unidos de America
EUR 123,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Very Good. Crease on a few pages*.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 174,53
Usado desde EUR 138,66
Encuentre también Tapa dura
Librería: Moe's Books, Berkeley, CA, Estados Unidos de America
EUR 109,07
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. This an extremely clean copy. There are no markings to the text and only some minor smudges and dings to the cover from shelf/handling wear.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 201,02
Usado desde EUR 148,78
Encuentre también Tapa dura
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 364210164X ISBN 13: 9783642101649
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 139,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, geometric problems, inapproximability results, mechanism design, network design, packing and covering, paradigms for design and analysis of approximation and online algorithms, randomization techniques, real-world applications, scheduling problems and so on. The past years have witnessed a large number of interesting applications using various techniques of Computational Intelligence such as rough sets, connectionist learning; fuzzy logic; evolutionary computing; artificial immune systems; swarm intelligence; reinforcement learning, intelligent multimedia processing etc. In spite of numerous successful applications of Computational Intelligence in business and industry, it is sometimes difficult to explain the performance of these techniques and algorithms from a theoretical perspective. Therefore, we encouraged authors to present original ideas dealing with the incorporation of different mechanisms of Computational Intelligent dealing with Learning and Approximation algorithms and underlying processes. This edited volume comprises 15 chapters, including an overview chapter, which provides an up-to-date and state-of-the art research on the application of Computational Intelligence for learning and approximation.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 151,08
Usado desde EUR 235,75
Encuentre también Tapa blanda
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 169,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 171,49
Usado desde EUR 260,14
Encuentre también Tapa dura
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 169,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 174,53
Usado desde EUR 282,10
Encuentre también Tapa dura
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642101674 ISBN 13: 9783642101670
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 6: Data Mining: Theoretical Foundations and Applications Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, business, health care, banking, retail, and many others. Advanced representation schemes and computational intelligence techniques such as rough sets, neural networks; decision trees; fuzzy logic; evolutionary algorithms; arti- cial immune systems; swarm intelligence; reinforcement learning, association rule mining, Web intelligence paradigms etc. have proved valuable when they are - plied to Data Mining problems. Computational tools or solutions based on intel- gent systems are being used with great success in Data Mining applications. It is also observed that strong scientific advances have been made when issues from different research areas are integrated. This Volume comprises of 15 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Int- ligence techniques for Data Mining. The book is divided into 3 parts: Part-I: Data Click Streams and Temporal Data Mining Part-II: Text and Rule Mining Part-III: Applications Part I on Data Click Streams and Temporal Data Mining contains four chapters that describe several approaches in Data Click Streams and Temporal Data Mining.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 172,48
Usado desde EUR 262,58
Encuentre también Tapa blanda
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642101658 ISBN 13: 9783642101656
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc.Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 156,75
Usado desde EUR 262,58
Encuentre también Tapa blanda
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642101836 ISBN 13: 9783642101830
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning - Theoretical Foundations Part-II: Approximate Reasoning - Success Stories and Real World Applications Part I on Approximate Reasoning - Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, 'Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox' by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters).
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 156,75
Usado desde EUR 262,58
Encuentre también Tapa blanda
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642101666 ISBN 13: 9783642101663
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Mining Theoretical Foundations and Applications Recent advances in the computing and electronics technology, particularly in sensor devices, databases and distributed systems, are leading to an exponential growth in the amount of data stored in databases. It has been estimated that this amount doubles every 20 years. For some applications, this increase is even steeper. Databases storing DNA sequence, for example, are doubling their size every 10 months. This growth is occurring in several applications areas besides bioinformatics, like financial transactions, government data, environmental mo- toring, satellite and medical images, security data and web. As large organizations recognize the high value of data stored in their databases and the importance of their data collection to support decision-making, there is a clear demand for - phisticated Data Mining tools. Data mining tools play a key role in the extraction of useful knowledge from databases. They can be used either to confirm a parti- lar hypothesis or to automatically find patterns. In the second case, which is - lated to this book, the goal may be either to describe the main patterns present in dataset, what is known as descriptive Data Mining or to find patterns able to p- dict behaviour of specific attributes or features, known as predictive Data Mining. While the first goal is associated with tasks like clustering, summarization and association, the second is found in classification and regression problems.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 172,48
Usado desde EUR 262,58
Encuentre también Tapa blanda
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642424392 ISBN 13: 9783642424397
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 213,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 5: Function Approximation and Classification Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mat- matics. The need for function approximation and classification arises in many branches of applied mathematics, computer science and data mining in particular. This edited volume comprises of 14 chapters, including several overview Ch- ters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of function approximation and classification. Besides research ar- cles and expository papers on theory and algorithms of function approximation and classification, papers on numerical experiments and real world applications were also encouraged. The Volume is divided into 2 parts: Part-I: Function Approximation and Classification - Theoretical Foundations Part-II: Function Approximation and Classification - Success Stories and Real World Applications Part I on Function Approximation and Classification - Theoretical Foundations contains six chapters that describe several approaches Feature Selection, the use Decomposition of Correlation Integral, Some Issues on Extensions of Information and Dynamic Information System and a Probabilistic Approach to the Evaluation and Combination of Preferences Chapter 1 'Feature Selection for Partial Least Square Based Dimension Red- tion' by Li and Zeng investigate a systematic feature reduction framework by combing dimension reduction with feature selection. To evaluate the proposed framework authors used four typical data sets.
Más opciones de compra de otros vendedores en IberLibro
Nuevo desde EUR 201,02
Usado desde EUR 327,23
Encuentre también Tapa blanda