Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 54,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 173,76
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 179,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 177,47
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 177,46
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 196,75
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 196,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 239,12
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2025
ISBN 10: 9811956529 ISBN 13: 9789811956522
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 184,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date.Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 185,68
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date.Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 270,84
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 229 pages. 9.25x6.10x0.79 inches. In Stock.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 251,76
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 260,48
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.