Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 75,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 73,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 71,25
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 75,81
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 75,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 93,88
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 96,05
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 82,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: CitiRetail, Stevenage, Reino Unido
EUR 80,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue "Edge-Cloud Computing and Federated-Split Learning in the Internet of Things" aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Rarewaves.com UK, London, Reino Unido
EUR 117,08
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 125,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 123,94
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 73,58
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue "Edge-Cloud Computing and Federated-Split Learning in the Internet of Things" aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 82,01
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue 'Edge-Cloud Computing and Federated-Split Learning in the Internet of Things' aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 128,78
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 131,98
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.