Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 127,54
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 130,98
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 137,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 154,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 154,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 149,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 154,00
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 162,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 162,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 166,91
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 168,56
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 192,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Singapore, Springer Nature Singapore Feb 2022, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch.
Publicado por Springer Verlag, Singapore, SG, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 205,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2021 ed. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 156,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 213,48
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Publicado por Springer Verlag, Singapore, SG, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 224,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2021 ed. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 229,28
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 180 pages. 9.25x6.10x0.39 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 231,17
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 180 pages. 9.25x6.10x0.50 inches. In Stock.
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.
Publicado por Springer, Berlin|Springer Nature Singapore|Springer, 2021
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.
Publicado por Springer Nature Singapore Feb 2023, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Publicado por Springer Nature Singapore Feb 2022, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Publicado por Springer Nature Singapore, Springer Nature Singapore Feb 2023, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 221,95
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 232,36
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.