Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 101,03
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 103,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 103,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 110,53
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 109,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 140,27
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 284.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3642098614 ISBN 13: 9783642098611
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 152,43
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 268 pages. 9.00x6.00x0.64 inches. In Stock.
Librería: preigu, Osnabrück, Alemania
EUR 95,80
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Design and Analysis of Learning Classifier Systems | A Probabilistic Approach | Jan Drugowitsch | Taschenbuch | xiv | Englisch | 2010 | Springer Berlin | EAN 9783642098611 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Mai 2008, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642098614 ISBN 13: 9783642098611
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 162,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 160,04
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642098614 ISBN 13: 9783642098611
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. 284 pp. Englisch.
Publicado por Springer Berlin Heidelberg Mai 2008, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. 284 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Latest research in the area of Learning Classifier SystemsPresents a probabilistic approach to Design and Analysis of Learning Classifier SystemsThis book is probably best summarized as providing a principled foundation for Learning Classi.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642098614 ISBN 13: 9783642098611
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Latest research in the area of Learning Classifier SystemsPresents a probabilistic approach to Design and Analysis of Learning Classifier SystemsThis book is probably best summarized as providing a principled foundation for Learning Classi.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 146,82
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 284 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 148,81
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 284.
Librería: preigu, Osnabrück, Alemania
EUR 95,80
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Design and Analysis of Learning Classifier Systems | A Probabilistic Approach | Jan Drugowitsch | Buch | xiv | Englisch | 2008 | Springer Berlin | EAN 9783540798651 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642098614 ISBN 13: 9783642098611
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.