Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
EUR 16,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoxiv, 208 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319450255 ISBN 13: 9783319450254
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.
Publicado por Springer International Publishing, 2018
ISBN 10: 3319831909 ISBN 13: 9783319831909
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.
Publicado por Springer International Publishing, Springer Nature Switzerland Jun 2018, 2018
ISBN 10: 3319831909 ISBN 13: 9783319831909
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book presents a selection of the most recent algorithmic advances in Riemanniangeometry in the context of machine learning, statistics, optimization, computervision, and related fields. The unifying theme of the different chapters in the bookis the exploitation of the geometry of data using the mathematical machinery ofRiemannian geometry. As demonstrated by all the chapters in the book, when the datais intrinsically non-Euclidean, the utilization of this geometrical information can leadto better algorithms that can capture more accurately the structures inherent in thedata, leading ultimately to better empirical performance. This book is not intended tobe an encyclopedic compilation of the applications of Riemannian geometry. Instead, itfocuses on several important research directions that are currently actively pursued byresearchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionarylearning and sparse coding on manifolds. Examples of applications include novel algorithmsfor Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch.
Publicado por Springer International Publishing, Springer Nature Switzerland Okt 2016, 2016
ISBN 10: 3319450255 ISBN 13: 9783319450254
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book presents a selection of the most recent algorithmic advances in Riemanniangeometry in the context of machine learning, statistics, optimization, computervision, and related fields. The unifying theme of the different chapters in the bookis the exploitation of the geometry of data using the mathematical machinery ofRiemannian geometry. As demonstrated by all the chapters in the book, when the datais intrinsically non-Euclidean, the utilization of this geometrical information can leadto better algorithms that can capture more accurately the structures inherent in thedata, leading ultimately to better empirical performance. This book is not intended tobe an encyclopedic compilation of the applications of Riemannian geometry. Instead, itfocuses on several important research directions that are currently actively pursued byresearchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionarylearning and sparse coding on manifolds. Examples of applications include novel algorithmsfor Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 204,62
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 213,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 249,61
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 222.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 229,37
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Publicado por Springer International Publishing, 2018
ISBN 10: 3319831909 ISBN 13: 9783319831909
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 127,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Showcases Riemannian geometry as a foundational mathematical framework for solving many problems in machine learning, statistics, optimization, computer vision, and related fields Describes comprehensively the state-of-the-art theory and algorith.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319450255 ISBN 13: 9783319450254
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 127,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Showcases Riemannian geometry as a foundational mathematical framework for solving many problems in machine learning, statistics, optimization, computer vision, and related fields Describes comprehensively the state-of-the-art theory and algorith.
Publicado por Springer International Publishing Okt 2016, 2016
ISBN 10: 3319450255 ISBN 13: 9783319450254
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking. 224 pp. Englisch.
Publicado por Springer International Publishing Jun 2018, 2018
ISBN 10: 3319831909 ISBN 13: 9783319831909
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 149,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking. 224 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 213,55
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 219,94
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 255,65
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 222.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 270,63
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 222.