Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 48,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 47,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 54,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 54,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 62,83
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 50,77
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 52,90
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 53,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 59,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Jul 2017, 2017
ISBN 10: 3031014669 ISBN 13: 9783031014666
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be¿and more and more frequently are¿taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations.The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2017
ISBN 10: 3031014669 ISBN 13: 9783031014666
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 48,14
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be-and more and more frequently are-taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations.The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 62,27
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por Springer International Publishing Jul 2017, 2017
ISBN 10: 3031014669 ISBN 13: 9783031014666
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be-and more and more frequently are-taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations. The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future. 164 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 64,59
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2017
ISBN 10: 3031014669 ISBN 13: 9783031014666
Librería: moluna, Greven, Alemania
EUR 42,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped w.
Idioma: Inglés
Publicado por Springer International Publishing, 2017
ISBN 10: 3031014669 ISBN 13: 9783031014666
Librería: preigu, Osnabrück, Alemania
EUR 44,65
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Stochastic Partial Differential Equations for Computer Vision with Uncertain Data | Tobias Preusser (u. a.) | Taschenbuch | xiv | Englisch | 2017 | Springer International Publishing | EAN 9783031014666 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.