Idioma: Inglés
Publicado por Springer Nature Switzerland AG, Cham, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 145,32
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! Im pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book Ive seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 135,13
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 186,56
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2021 edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 149,79
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & BioinformaticsLiterature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, not Elektronisches Buch with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, Cham, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 201,43
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! Im pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book Ive seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 218,06
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 333 pages. 9.25x6.10x0.91 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 141,86
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 333 pages. 9.25x6.10x0.91 inches. In Stock. This item is printed on demand.
Idioma: Inglés
Publicado por Springer International Publishing Dez 2022, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 149,79
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & BioinformaticsLiterature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, not Elektronisches Buch with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group 336 pp. Englisch.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: moluna, Greven, Alemania
EUR 127,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 196,82
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: preigu, Osnabrück, Alemania
EUR 132,20
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning | Uday Kamath (u. a.) | Taschenbuch | xxiii | Englisch | 2022 | Springer | EAN 9783030833589 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Dez 2022, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 149,79
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 199,82
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.