Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido
EUR 36,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Most items will be dispatched the same or the next working day. A copy that has been read but remains in clean condition. All of the pages are intact and the cover is intact and the spine may show signs of wear. The book may have minor markings which are not specifically mentioned.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 51,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Packt Publishing 12/12/2018, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 49,03
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Python Advanced Guide to Artificial Intelligence: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents us 2.84. Book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 45,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Packt Publishing 2018-12-21, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 48,21
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 51,13
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Packt Publishing Limited, GB, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 71,28
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problemsKey FeaturesMaster supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and moreBuild, deploy, and scale end-to-end deep neural network models in a production environmentBook DescriptionThis Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problemsThis Learning Path includes content from the following Packt products:Mastering Machine Learning Algorithms by Giuseppe BonaccorsoMastering TensorFlow 1.x by Armando FandangoDeep Learning for Computer Vision by Rajalingappaa ShanmugamaniWhat you will learnExplore how an ML model can be trained, optimized, and evaluatedWork with Autoencoders and Generative Adversarial NetworksExplore the most important Reinforcement Learning techniquesBuild end-to-end deep learning (CNN, RNN, and Autoencoders) modelsWho this book is forThis Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 55,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Packt Publishing Limited, GB, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 76,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problemsKey FeaturesMaster supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and moreBuild, deploy, and scale end-to-end deep neural network models in a production environmentBook DescriptionThis Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problemsThis Learning Path includes content from the following Packt products:Mastering Machine Learning Algorithms by Giuseppe BonaccorsoMastering TensorFlow 1.x by Armando FandangoDeep Learning for Computer Vision by Rajalingappaa ShanmugamaniWhat you will learnExplore how an ML model can be trained, optimized, and evaluatedWork with Autoencoders and Generative Adversarial NetworksExplore the most important Reinforcement Learning techniquesBuild end-to-end deep learning (CNN, RNN, and Autoencoders) modelsWho this book is forThis Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 51,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. New Copy. Customer Service Guaranteed.
Librería: Goodwill San Antonio, San Antonio, TX, Estados Unidos de America
EUR 36,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Good Reading Copy, May have minor shelf wear, Fast Shipping - Safe and Secure in Mailer.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 44,03
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 84,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 39,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Packt Publishing Limited, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 52,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing Limited, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 56,31
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing, Limited, 2018
ISBN 10: 1789957214 ISBN 13: 9781789957211
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 63,19
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 764.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 70,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features:Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description: This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: ¿ Mastering Machine Learning Algorithms by Giuseppe Bonaccorso ¿ Mastering TensorFlow 1.x by Armando Fandango ¿ Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn:Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for: This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
EUR 65,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You ll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use t.