Librería: Anybook.com, Lincoln, Reino Unido
EUR 65,94
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Poor. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,650grams, ISBN:9781441928481.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 91,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 88,19
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 87,43
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 103,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 124,98
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 360.
Idioma: Inglés
Publicado por Springer New York, Springer US Nov 2010, 2010
ISBN 10: 1441928480 ISBN 13: 9781441928481
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 96,29
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel Ill additive number theory, not for experts who already know it. For this reason, proofs include many 'unnecessary' and 'obvious' steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 360 pp. Englisch.
Idioma: Inglés
Publicado por Springer New York, Springer US, 2010
ISBN 10: 1441928480 ISBN 13: 9781441928481
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 100,94
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - [Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel Ill additive number theory, not for experts who already know it. For this reason, proofs include many 'unnecessary' and 'obvious' steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 153,64
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Springer New York, Springer US Nov 2010, 2010
ISBN 10: 1441928480 ISBN 13: 9781441928481
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 96,29
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel Ill additive number theory, not for experts who already know it. For this reason, proofs include many 'unnecessary' and 'obvious' steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture. 360 pp. Englisch.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., 2010
ISBN 10: 1441928480 ISBN 13: 9781441928481
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 104,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: moluna, Greven, Alemania
EUR 81,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. [Hilbert s] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer s labor and paper are costly but the reader s effort and time are not. H. Weyl [143] The purpose of this book is to describe t.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 127,67
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 360 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 130,40
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 360.
Librería: preigu, Osnabrück, Alemania
EUR 84,50
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Additive Number Theory The Classical Bases | Melvyn B. Nathanson | Taschenbuch | xiv | Englisch | 2010 | Humana | EAN 9781441928481 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.