Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
EUR 80,47
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Good. No Jacket. Former library book; Missing dust jacket; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 113,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 115,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 111,46
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 136,73
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This work introduces functional networks, showing that functional network architectures can be applied to solve many practical problems. It includes an introduction to neural networks, a description of functional networks, applications, and computer programs in Mathematica and Java languages. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 320 pages, biography. BIC Classification: UYQN. Category: (UU) Undergraduate. Dimension: 235 x 155 x 19. Weight in Grams: 636. . 1998. Hardback. . . . .
Idioma: Inglés
Publicado por Springer US, Springer US Okt 1998, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 326 pp. Englisch.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 168,07
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This work introduces functional networks, showing that functional network architectures can be applied to solve many practical problems. It includes an introduction to neural networks, a description of functional networks, applications, and computer programs in Mathematica and Java languages. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 320 pages, biography. BIC Classification: UYQN. Category: (UU) Undergraduate. Dimension: 235 x 155 x 19. Weight in Grams: 636. . 1998. Hardback. . . . . Books ship from the US and Ireland.
Idioma: Inglés
Publicado por Springer US, Springer US, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 170,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 161,39
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 193,36
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes. 326 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 95,70
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Functional Networks with Applications | A Neural-Based Paradigm | Enrique Castillo (u. a.) | Buch | xi | Englisch | 1998 | Springer | EAN 9780792383321 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.