Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 72,53
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Speedyhen, London, Reino Unido
EUR 69,92
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: NEW.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 82,57
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 81,74
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. 2019. Revised edition. Hardcover. . . . . .
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 83,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 72,51
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 84,68
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Revised edition NO-PA16APR2015-KAP.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 80,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 87,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 99,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. 2019. Revised edition. Hardcover. . . . . . Books ship from the US and Ireland.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 84,82
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 86,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 89,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 100,81
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. revised updated edition. 537 pages. 10.00x7.00x1.50 inches. In Stock.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
EUR 82,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Item in good condition and has highlighting/writing on text. Used texts may not contain supplemental items such as CDs, info-trac etc.
Publicado por Princeton University Press, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 90,48
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoGebunden. Condición: New.
Publicado por Princeton University Press Dez 2019, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 98,67
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth o.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 117,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 120,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 120,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers.
Publicado por Princeton University Press, New Jersey, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 89,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth o Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 128,65
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers.
Publicado por Princeton University Press, New Jersey, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 104,60
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth o Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Princeton University Press, New Jersey, 2019
ISBN 10: 0691198306 ISBN 13: 9780691198309
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 155,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.Fully revised and expandedDescribes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data setsFeatures real-world data sets from astronomical surveysUses a freely available Python codebase throughoutIdeal for graduate students, advanced undergraduates, and working astronomers Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth o Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.