Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Prior Books Ltd, Cheltenham, Reino Unido
Original o primera edición
EUR 14,78
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. First Edition. Firm, square and tight with sturdy hinges, just showing a few minor bumps and some mild cosmetic wear. Hence a non-text page is stamped 'damaged'. Despite such this book is in nearly new condition. Thus the contents are crisp, fresh and clean. Offered for sale at a very sensible price.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 128,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 153,67
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests, neural nets, support vector machines, nearest neighbors and boosting. Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 139,82
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Cambridge University Press CUP, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 197,12
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 298 Index.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 191,32
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 312 pages. 9.84x7.01x0.94 inches. In Stock.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 213,90
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests(TM), neural nets, support vector machines, nearest neighbors and boosting.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 261,18
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 149,43
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 312 pages. 9.84x7.01x0.94 inches. In Stock. This item is printed on demand.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: CitiRetail, Stevenage, Reino Unido
EUR 153,62
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests, neural nets, support vector machines, nearest neighbors and boosting. Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: moluna, Greven, Alemania
EUR 150,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontech.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: Majestic Books, Hounslow, Reino Unido
EUR 201,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 298 47 Illus.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 209,77
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests, neural nets, support vector machines, nearest neighbors and boosting. Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521875803 ISBN 13: 9780521875806
Librería: preigu, Osnabrück, Alemania
EUR 179,00
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Statistical Learning for Biomedical Data | James D. Malley (u. a.) | Buch | Gebunden | Englisch | 2011 | Cambridge University Press | EAN 9780521875806 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.