Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 101,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 101,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 169,48
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 480 14 Illus.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 185,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 212,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
Original o primera edición
EUR 194,63
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 201,72
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 189,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 231,27
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 225,29
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 283,93
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 276,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional.' The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 192,08
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand.
Publicado por Cambridge University Press, 2009
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 192,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes many traditional elements of the subject. It gives a quick but directed introduction to some fundamental conc.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 231,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 900.