Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 35,36
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer International Publishing AG, CH, 2016
ISBN 10: 3031012224 ISBN 13: 9783031012228
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 47,91
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Over the last decade, differential privacy (DP) has emerged as the de facto standard privacy notion for research in privacy-preserving data analysis and publishing. The DP notion offers strong privacy guarantee and has been applied to many data analysis tasks.This Synthesis Lecture is the first of two volumes on differential privacy. This lecture differs from the existing books and surveys on differential privacy in that we take an approach balancing theory and practice. We focus on empirical accuracy performances of algorithms rather than asymptotic accuracy guarantees. At the same time, we try to explain why these algorithms have those empirical accuracy performances. We also take a balanced approach regarding the semantic meanings of differential privacy, explaining both its strong guarantees and its limitations.We start by inspecting the definition and basic properties of DP, and the main primitives for achieving DP. Then, we give a detailed discussion on the the semantic privacy guarantee provided by DP and the caveats when applying DP. Next, we review the state of the art mechanisms for publishing histograms for low-dimensional datasets, mechanisms for conducting machine learning tasks such as classification, regression, and clustering, and mechanisms for publishing information to answer marginal queries for high-dimensional datasets. Finally, we explain the sparse vector technique, including the many errors that have been made in the literature using it.The planned Volume 2 will cover usage of DP in other settings, including high-dimensional datasets, graph datasets, local setting, location privacy, and so on. We will also discuss various relaxations of DP.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 45,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 34,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 34,46
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 38,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 65,34
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 74,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 80,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 83,56
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2016. Paperback. . . . . .
Idioma: Inglés
Publicado por Springer International Publishing AG, CH, 2016
ISBN 10: 3031012224 ISBN 13: 9783031012228
Librería: Rarewaves.com UK, London, Reino Unido
Original o primera edición
EUR 37,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 1st. Over the last decade, differential privacy (DP) has emerged as the de facto standard privacy notion for research in privacy-preserving data analysis and publishing. The DP notion offers strong privacy guarantee and has been applied to many data analysis tasks.This Synthesis Lecture is the first of two volumes on differential privacy. This lecture differs from the existing books and surveys on differential privacy in that we take an approach balancing theory and practice. We focus on empirical accuracy performances of algorithms rather than asymptotic accuracy guarantees. At the same time, we try to explain why these algorithms have those empirical accuracy performances. We also take a balanced approach regarding the semantic meanings of differential privacy, explaining both its strong guarantees and its limitations.We start by inspecting the definition and basic properties of DP, and the main primitives for achieving DP. Then, we give a detailed discussion on the the semantic privacy guarantee provided by DP and the caveats when applying DP. Next, we review the state of the art mechanisms for publishing histograms for low-dimensional datasets, mechanisms for conducting machine learning tasks such as classification, regression, and clustering, and mechanisms for publishing information to answer marginal queries for high-dimensional datasets. Finally, we explain the sparse vector technique, including the many errors that have been made in the literature using it.The planned Volume 2 will cover usage of DP in other settings, including high-dimensional datasets, graph datasets, local setting, location privacy, and so on. We will also discuss various relaxations of DP.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 103,65
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2016. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 82,52
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 84,83
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2016
ISBN 10: 3031012224 ISBN 13: 9783031012228
Librería: moluna, Greven, Alemania
EUR 60,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Over the last decade, differential privacy (DP) has emerged as the de facto standard privacy notion for research in privacy-preserving data analysis and publishing. The DP notion offers strong privacy guarantee and has been applied to many data an.