Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 28,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 27,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 31,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 30,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 39,13
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 30,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 30,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 35,75
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 60,76
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 64,68
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 67,10
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
EUR 56,11
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 80,15
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Peter Lang GmbH, Internationaler Verlag der Wissenschaften, 2009
ISBN 10: 3631575505 ISBN 13: 9783631575505
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 73,22
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Mai 2013, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 26,74
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 26,74
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.
Idioma: Inglés
Publicado por Springer International Publishing, 2019
ISBN 10: 3031010434 ISBN 13: 9783031010439
Librería: moluna, Greven, Alemania
EUR 47,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Jun 2019, 2019
ISBN 10: 3031010434 ISBN 13: 9783031010439
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano--and most other languages--remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages.In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 136 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2019
ISBN 10: 3031010434 ISBN 13: 9783031010439
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano--and most other languages--remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages.In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Sep 2021, 2021
ISBN 10: 3031010523 ISBN 13: 9783031010521
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 64,19
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2021
ISBN 10: 3031010523 ISBN 13: 9783031010521
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 64,19
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.
Idioma: Inglés
Publicado por Peter Lang, Peter Lang, 2009
ISBN 10: 3631575505 ISBN 13: 9783631575505
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 68,95
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The articles collected in this volume present different aspects of the use of typed feature structures in theoretical and computational linguistics. It covers a wide range of linguistics theories (CCG, Construction Grammar, HPSG, LTAG), a wide range of linguistic phenomena (aspect, concord, idioms, passive), and a wide range of applications (parsing, question answering, semantic composition).
Librería: Vangsgaards Antikvariat Aps, Copenhagen, Dinamarca
EUR 10,34
Cantidad disponible: 1 disponibles
Añadir al carritoGladiator, København 2019. 70 sider. Heftet med originalt omslag.
Librería: Vangsgaards Antikvariat Aps, Copenhagen, Dinamarca
EUR 13,10
Cantidad disponible: 1 disponibles
Añadir al carritoKronstork, København 2025. 86 sider. Orig. omslag. Pæn.
Librería: Vangsgaards Antikvariat Aps, Copenhagen, Dinamarca
EUR 13,79
Cantidad disponible: 1 disponibles
Añadir al carritoKronstork, København 2025. 86 sider. Orig. omslag. Meget velholdt.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 38,14
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por Springer International Publishing Mai 2013, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 26,74
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant. 104 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 39,93
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.