Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 27,87
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: INDOO, Avenel, NJ, Estados Unidos de America
EUR 30,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 30,76
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por John Wiley & Sons Inc, New York, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 37,80
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por John Wiley and Sons Inc, US, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 39,26
Cantidad disponible: 13 disponibles
Añadir al carritoHardback. Condición: New. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.
Idioma: Inglés
Publicado por John Wiley and Sons Inc, US, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 41,56
Cantidad disponible: 8 disponibles
Añadir al carritoHardback. Condición: New. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 41,86
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 33,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 34,12
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 41,89
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 208 pages. 9.21x6.30x0.79 inches. In Stock.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 50,78
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 41,92
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. 1st Edition. Hardcover. . . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 51,31
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. 1st Edition. Hardcover. . . . . . Books ship from the US and Ireland.
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
EUR 71,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand new! Please provide a physical shipping address.
Idioma: Inglés
Publicado por John Wiley & Sons Inc, New York, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: CitiRetail, Stevenage, Reino Unido
EUR 38,65
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por John Wiley & Sons Inc, New York, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 51,71
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Idioma: Inglés
Publicado por John Wiley and Sons Inc, US, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 43,57
Cantidad disponible: 8 disponibles
Añadir al carritoHardback. Condición: New. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.
EUR 38,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. TERISA ROBERTS, PHD, is Global Solution Lead for Risk Modeling and Decisioning at SAS. She has nearly twenty years of experience in quantitative risk management and advanced analytics. She regularly advises banks and regulators around the world on industry .
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 46,63
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementationRisk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process.Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume:\* Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial risk\* Discusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniques\* Covers the basic principles and nuances of feature engineering and common machine learning algorithms\* Illustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycle\* Explains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitionersRisk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.
Idioma: Inglés
Publicado por John Wiley and Sons Inc, US, 2022
ISBN 10: 1119824931 ISBN 13: 9781119824930
Librería: Rarewaves.com UK, London, Reino Unido
EUR 36,33
Cantidad disponible: 13 disponibles
Añadir al carritoHardback. Condición: New. A wide-ranging overview of the use of machine learning and AI techniques in financial risk management, including practical advice for implementation Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning introduces readers to the use of innovative AI technologies for forecasting and evaluating financial risks. Providing up-to-date coverage of the practical application of current modelling techniques in risk management, this real-world guide also explores new opportunities and challenges associated with implementing machine learning and artificial intelligence (AI) into the risk management process. Authors Terisa Roberts and Stephen Tonna provide readers with a clear understanding about the strengths and weaknesses of machine learning and AI while explaining how they can be applied to both everyday risk management problems and to evaluate the financial impact of extreme events such as global pandemics and changes in climate. Throughout the text, the authors clarify misconceptions about the use of machine learning and AI techniques using clear explanations while offering step-by-step advice for implementing the technologies into an organization's risk management model governance framework. This authoritative volume: Highlights the use of machine learning and AI in identifying procedures for avoiding or minimizing financial riskDiscusses practical tools for assessing bias and interpretability of resultant models developed with machine learning algorithms and techniquesCovers the basic principles and nuances of feature engineering and common machine learning algorithmsIllustrates how risk modeling is incorporating machine learning and AI techniques to rapidly consume complex data and address current gaps in the end-to-end modelling lifecycleExplains how proprietary software and open-source languages can be combined to deliver the best of both worlds: for risk models and risk practitioners Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning is an invaluable guide for CEOs, CROs, CFOs, risk managers, business managers, and other professionals working in risk management.