Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 50,82
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 59,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 56,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 64,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 104,06
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,88
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 116,63
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 118,97
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 127,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 111,93
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Buchpark, Trebbin, Alemania
EUR 29,31
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the ¿noise¿ that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 138,65
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 124,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 129,67
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Context-aware ranking is an important task in search engine ranking. This book presents a generic method for context-aware ranking as well as its application. It applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Series: Studies in Computational Intelligence. Num Pages: 192 pages, biography. BIC Classification: UYQ. Category: (G) General (US: Trade). Dimension: 235 x 155 x 10. Weight in Grams: 302. . 2014. Paperback. . . . .
Idioma: Inglés
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2010
ISBN 10: 3642168973 ISBN 13: 9783642168970
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 159,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2011 ed.
Idioma: Inglés
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 162,39
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Context-aware ranking is an important task in search engine ranking. This book presents a generic method for context-aware ranking as well as its application. It applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Series: Studies in Computational Intelligence. Num Pages: 192 pages, biography. BIC Classification: UYQ. Category: (G) General (US: Trade). Dimension: 235 x 155 x 10. Weight in Grams: 302. . 2014. Paperback. . . . . Books ship from the US and Ireland.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, .) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'.
Librería: Buchpark, Trebbin, Alemania
EUR 76,21
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Idioma: Inglés
Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2010
ISBN 10: 3642168973 ISBN 13: 9783642168970
Librería: Rarewaves.com UK, London, Reino Unido
EUR 150,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. 2011 ed. Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, .) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'.
Librería: moluna, Greven, Alemania
EUR 47,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find th.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg Okt 2014, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, .) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'. 192 pp. Englisch.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a unified theory of context-aware ranking that subsumes several recommendation tasks such as item, tag and context-aware recommendation Easily readable and understandable Written by an expert in the fieldPresents a unifi.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642168973 ISBN 13: 9783642168970
Librería: moluna, Greven, Alemania
EUR 93,00
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a unified theory of context-aware ranking that subsumes several recommendation tasks such as item, tag and context-aware recommendation Easily readable and understandable Written by an expert in the fieldContext-aware ranki.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 147,13
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 145,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Okt 2014, 2014
ISBN 10: 3642423973 ISBN 13: 9783642423970
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, .) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch.