Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 43,50
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 46,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 59,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 45,19
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 46,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 48,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 55,05
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2013 edition. 110 pages. 9.25x6.25x0.25 inches. In Stock.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642311458 ISBN 13: 9783642311451
Librería: moluna, Greven, Alemania
EUR 39,56
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Sep 2012, 2012
ISBN 10: 3642311458 ISBN 13: 9783642311451
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 42,75
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student¿s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student¿s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student¿s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar¿s theorem are explained.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 112 pp. Englisch.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642311458 ISBN 13: 9783642311451
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 42,75
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student's distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student's t -marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student's t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar's theorem are explained.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg Sep 2012, 2012
ISBN 10: 3642311458 ISBN 13: 9783642311451
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 42,75
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student's distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student's t -marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student's t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar's theorem are explained. 112 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 41,10
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Student's t-Distribution and Related Stochastic Processes | Bronius Grigelionis | Taschenbuch | xi | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642311451 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.