This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term "chaotic communications" seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially "linear," and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.
This book introduces readers to a new and exciting cross-disciplinary field of digital communications with chaos. This field was born around 15 years ago, when it was first demonstrated that nonlinear systems which produce complex non-periodic noise-like chaotic signals, can be synchronized and modulated to carry useful information. Thus, chaotic signals can be used instead of pseudo-random digital sequences for spread-spectrum and private communication applications. This deceptively simple idea spun hundreds of research papers, and many novel communication schemes based on chaotic signals have been proposed. However, only very recently researchers have begun to make a transition from academic studies toward practical implementation issues, and many "promising" schemes had to be discarded or re-formulated. This book describes the state of the art (both theoretical and experimental) of this novel field. The book is written by leading experts in the fields of Nonlinear Dynamics and Electrical Engineering who participated in US Army sponsored Multi-University Research Initiative on Digital Communication using Nonlinear Dynamics. It will be useful for active researchers and advanced graduate students interested in this exciting new field.