Bayesian Inference and Maximum Entropy Methods in Science and Engineering: MaxEnt 37, Jarinu, Brazil, July 09?14, 2017 (Springer Proceedings in Mathematics & Statistics, 239)

ISBN 10: 3030081869 ISBN 13: 9783030081867
Editorial: Springer, 2019
Nuevos Encuadernación de tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 30 de agosto de 2024

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

SUPER FAST SHIPPING. N° de ref. del artículo 9783030081867

Denunciar este artículo

Sinopsis:

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

Acerca del autor:

Adriano Polpo, Ph.D., is an Associate Professor of Statistics at the Federal University of Sao Carlos (UFSCar, Brazil). He received his B.Sc. in Statistics from the State University of Campinas, his Ph.D. in Statistics from the University of Sao Paulo, and he was Research Associate at Florida State University. He is the coordinator of the research group GIS (Group of Inductive Statistics), and is the coauthor of more than 30 publications in statistical peer-reviewed journals, books, and book chapters. Dr. Polpo has served as Head of the Department of Statistics at UFSCar and President of the ISBrA (the Brazilian Chapter of the International Society for Bayesian Analysis). 

Julio Michael Stern, Ph.D., is a Full Professor at the IME-USP (Institute of Mathematics and Statistics of the University of Sao Paulo) and Research Fellow of the CNPq (Brazilian National Council for Science and Technology). He received his B.Sc. and M.Sc. in Physics from the University of Sao Paulo, his Ph.D. in Operations Research from Cornell University, and his Liv.Doc. in Computer Science from the University of Sao Paulo. He was President of the ISBrA (Brazilian Chapter of the International Society for Bayesian Analysis) from 2010 to 2012 and the organizer of MaxEnt 2008. He has published several books and articles in the areas of Epistemology and Logic, Mathematical Modeling and Operations Research, Statistical Theory and Methods, and Sparse and Structured Systems. 

Francisco Louzada, Ph.D., is a Full Professor of Statistics at the Department of Applied Mathematics and Statistics, University of Sao Paulo (ICMC-USP, Brazil); Research Productivity Fellow of the Brazilian founding agency CNPq, Level 1; Director of the Center for Risk Analysis (CER); Director of the Center for Applied Mathematics and Statistics in Industry (CeMEAI); Director of Technology Transfer, and Executive Director of External Relations at the Center for Research, Innovation and Dissemination of Mathematical Science in Industry (CEPIDCeMEAI). He received his Ph.D. in Statistics from the University of Oxford. Dr. Louzada is the author or coauthor of more than 200 publications in statistical peer-reviewed journals, books, and book chapters. He has supervised more than 100 assistant researchers, post-docs, graduate students, and undergraduates. 

Rafael Izbicki, Ph.D., is an Assistant Professor of Statistics at the Federal University of Sao Carlos (UFSCar, Brazil). He received his Ph.D. in Statistics from Carnegie Mellon University (CMU, USA) and his B.A. from the University of Sao Paulo (IME-USP, Brazil). He has published several papers in the areas of machine learning, nonparametric statistics, foundations of statistics, decision theory, Bayesian statistics, and high-dimensional inference. 

Hellinton Hatsuo Takada, Ph.D., is Vice President of Quantitative Research at Itaú Asset Management andis co-founder and director of Blitz-Trading. Additionally, he is a Professor at the Institute of Management Foundation (FIA, Brazil), the Assunção University Center-Pontifical Catholic University (UNIFAI-PUC, Brazil) and the Carlos Drummond de Andrade Group (GCDA, Brazil). He received his B.S., M.A., and Ph.D. degrees in Engineering from the Aeronautical Institute of Technology (ITA, Brazil), and he did his post-doctorate at the Institute of Mathematics and Statistics of the University of São Paulo (IME-USP, Brazil). He is certified with CPA-20 and CGA from the Brazilian Financial and Capital Markets Association (ANBIMA, Brazil) and has a Certificate in Quantitative Finance (CQF) from CQF Institute, UK. His research interests include finance, macroeconomic modeling, Bayesian statistics, information theory, and numerical optimization.

 

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Bayesian Inference and Maximum Entropy ...
Editorial: Springer
Año de publicación: 2019
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Polpo, Adriano|Stern, Julio|Louzada, Francisco|Izbicki, Rafael|Takada, Hellinton
Publicado por Springer International Publishing, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Adriano Polpo, Ph.D.,&nbspis an Associate Professor of Statistics at the Federal University of Sao Carlos (UFSCar, Brazil). He received his B.Sc. in Statistics from the State University of Campinas, his Ph.D. in Statistics from the University of . Nº de ref. del artículo: 448671268

Contactar al vendedor

Comprar nuevo

EUR 153,73
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Adriano Polpo (u. a.)
Publicado por Springer International Publishing, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Bayesian Inference and Maximum Entropy Methods in Science and Engineering | MaxEnt 37, Jarinu, Brazil, July 09-14, 2017 | Adriano Polpo (u. a.) | Taschenbuch | xvi | Englisch | 2019 | Springer International Publishing | EAN 9783030081867 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 116824166

Contactar al vendedor

Comprar nuevo

EUR 160,10
Gastos de envío: EUR 70,00
De Alemania a Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Adriano Polpo
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications.Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis.For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inferenceto illuminate the foundations of physical theories, are also of keen interest. Nº de ref. del artículo: 9783030081867

Contactar al vendedor

Comprar nuevo

EUR 181,89
Gastos de envío: EUR 62,44
De Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Adriano Polpo
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications.Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis.For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inferenceto illuminate the foundations of physical theories, are also of keen interest.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch. Nº de ref. del artículo: 9783030081867

Contactar al vendedor

Comprar nuevo

EUR 181,89
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Adriano Polpo
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications.Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis.For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest. 320 pp. Englisch. Nº de ref. del artículo: 9783030081867

Contactar al vendedor

Comprar nuevo

EUR 181,89
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020005239

Contactar al vendedor

Comprar nuevo

EUR 186,06
Gastos de envío: EUR 3,44
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030081867_new

Contactar al vendedor

Comprar nuevo

EUR 188,13
Gastos de envío: EUR 13,67
De Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26376473616

Contactar al vendedor

Comprar nuevo

EUR 219,89
Gastos de envío: EUR 3,44
A Estados Unidos de America

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 369571791

Contactar al vendedor

Comprar nuevo

EUR 236,72
Gastos de envío: EUR 7,42
De Reino Unido a Estados Unidos de America

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2019
ISBN 10: 3030081869 ISBN 13: 9783030081867
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18376473626

Contactar al vendedor

Comprar nuevo

EUR 237,33
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America

Cantidad disponible: 4 disponibles

Añadir al carrito