Artificial Neural Networks for Modelling and Control of Non-Linear Systems

Suykens, Johan A.K.; Vandewalle, Joos P.L.; De Moor, B.L.

ISBN 10: 0792396782 ISBN 13: 9780792396789
Editorial: Springer, 1995
Nuevos Encuadernación de tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 25 de marzo de 2015

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

In. N° de ref. del artículo ria9780792396789_new

Denunciar este artículo

Sinopsis:

Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required.
The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos.
The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq Theory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.

Reseña del editor: Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required.
The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos.
The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq Theory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Artificial Neural Networks for Modelling and...
Editorial: Springer
Año de publicación: 1995
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Johan A.K. Suykens|Joos P.L. Vandewalle|B.L. de Moor
Publicado por Springer US, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network. Nº de ref. del artículo: 5971663

Contactar al vendedor

Comprar nuevo

EUR 136,16
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Johan A.K. Suykens; Joos P.L. Vandewalle; B.L. de Moor
Publicado por Kluwer Academic Publishers, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: Saul54, Lynn, MA, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: New. No Jacket. Kluwer Academic Publishers (1996). HARDCOVER without dj. Book looks AsNew. 9.75"x6.5". be43050. Nº de ref. del artículo: ABE-1511275315841

Contactar al vendedor

Comprar nuevo

EUR 143,50
Gastos de envío: EUR 6,88
A Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Suykens, Johan A.K.; Vandewalle, Joos P.L.; De Moor, B.L.
Publicado por Springer, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190186109

Contactar al vendedor

Comprar nuevo

EUR 158,13
Gastos de envío: EUR 3,43
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Suykens, Johan A. K.; Vandewalle, Joos P. L.; De Moor, Bart L. R.
Publicado por Springer, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 758079-n

Contactar al vendedor

Comprar nuevo

EUR 159,31
Gastos de envío: EUR 2,27
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Johan A. K. Suykens
Publicado por Springer US, Springer US Dez 1995, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required.The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos.The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLqTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch. Nº de ref. del artículo: 9780792396789

Contactar al vendedor

Comprar nuevo

EUR 160,49
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Johan A. K. Suykens
Publicado por Springer US Dez 1995, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq Theory, that have applications in control theory, system theory, circuit theory and Time Series Analysis. 252 pp. Englisch. Nº de ref. del artículo: 9780792396789

Contactar al vendedor

Comprar nuevo

EUR 160,49
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Johan A. K. Suykens
Publicado por Springer US, Springer US, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLqTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis. Nº de ref. del artículo: 9780792396789

Contactar al vendedor

Comprar nuevo

EUR 168,73
Gastos de envío: EUR 62,74
De Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Suykens, Johan A. K.; Vandewalle, Joos P. L.; De Moor, Bart L. R.
Publicado por Springer, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 758079-n

Contactar al vendedor

Comprar nuevo

EUR 170,06
Gastos de envío: EUR 17,16
De Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Suykens, Johan A.K.; Vandewalle, Joos P.L.; De Moor, B.L.
Publicado por Springer, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9780792396789

Contactar al vendedor

Comprar nuevo

EUR 178,93
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Johan A.K. Suykens B.L. de Moor Joos P.L. Vandewalle
Publicado por Springer, 1995
ISBN 10: 0792396782 ISBN 13: 9780792396789
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 252. Nº de ref. del artículo: 262167533

Contactar al vendedor

Comprar nuevo

EUR 203,05
Gastos de envío: EUR 3,43
A Estados Unidos de America

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda