Deep Learning for Natural Language Processing is a comprehensive guide that explores the intersection of deep learning techniques and natural language processing (NLP).
The book begins with an overview of fundamental NLP concepts and progresses into advanced deep learning architectures, including feedforward neural networks, recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and attention mechanisms. Each chapter offers clear explanations of the theory behind the models, followed by practical code examples using popular deep learning frameworks like TensorFlow and PyTorch.
Readers will learn how to preprocess text data, build word embeddings, and work with sequence models to handle real-world language data. The authors also cover cutting-edge techniques such as transformers, BERT, and GPT, which have revolutionized NLP tasks. Emphasizing both theory and hands-on practice, this book is ideal for students, researchers, and professionals looking to deepen their understanding of deep learning methods in the context of language.
By the end of the book, readers will be equipped with the skills to tackle a wide range of NLP problems using deep learning, and will gain a deeper appreciation for the powerful combination of deep learning and natural language processing in transforming industries like healthcare, finance, and customer service.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 4,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798896730347_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9798896730347
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Deep Learning for Natural Language Processing is a comprehensive guide that explores the intersection of deep learning techniques and natural language processing (NLP). Nº de ref. del artículo: 9798896730347
Cantidad disponible: 2 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Deep Learning for Natural Language Processing is a comprehensive guide that explores the intersection of deep learning techniques and natural language processing (NLP). The book begins with an overview of fundamental NLP concepts and progresses into advanced deep learning architectures, including feedforward neural networks, recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and attention mechanisms. Each chapter offers clear explanations of the theory behind the models, followed by practical code examples using popular deep learning frameworks like TensorFlow and PyTorch.Readers will learn how to preprocess text data, build word embeddings, and work with sequence models to handle real-world language data. The authors also cover cutting-edge techniques such as transformers, BERT, and GPT, which have revolutionized NLP tasks. Emphasizing both theory and hands-on practice, this book is ideal for students, researchers, and professionals looking to deepen their understanding of deep learning methods in the context of language.By the end of the book, readers will be equipped with the skills to tackle a wide range of NLP problems using deep learning, and will gain a deeper appreciation for the powerful combination of deep learning and natural language processing in transforming industries like healthcare, finance, and customer service. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798896730347
Cantidad disponible: 1 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. Deep Learning for Natural Language Processing is a comprehensive guide that explores the intersection of deep learning techniques and natural language processing (NLP). The book begins with an overview of fundamental NLP concepts and progresses into advanced deep learning architectures, including feedforward neural networks, recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and attention mechanisms. Each chapter offers clear explanations of the theory behind the models, followed by practical code examples using popular deep learning frameworks like TensorFlow and PyTorch.Readers will learn how to preprocess text data, build word embeddings, and work with sequence models to handle real-world language data. The authors also cover cutting-edge techniques such as transformers, BERT, and GPT, which have revolutionized NLP tasks. Emphasizing both theory and hands-on practice, this book is ideal for students, researchers, and professionals looking to deepen their understanding of deep learning methods in the context of language.By the end of the book, readers will be equipped with the skills to tackle a wide range of NLP problems using deep learning, and will gain a deeper appreciation for the powerful combination of deep learning and natural language processing in transforming industries like healthcare, finance, and customer service. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9798896730347
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Deep Learning for Natural Language Processing is a comprehensive guide that explores the intersection of deep learning techniques and natural language processing (NLP). The book begins with an overview of fundamental NLP concepts and progresses into advanced deep learning architectures, including feedforward neural networks, recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and attention mechanisms. Each chapter offers clear explanations of the theory behind the models, followed by practical code examples using popular deep learning frameworks like TensorFlow and PyTorch.Readers will learn how to preprocess text data, build word embeddings, and work with sequence models to handle real-world language data. The authors also cover cutting-edge techniques such as transformers, BERT, and GPT, which have revolutionized NLP tasks. Emphasizing both theory and hands-on practice, this book is ideal for students, researchers, and professionals looking to deepen their understanding of deep learning methods in the context of language.By the end of the book, readers will be equipped with the skills to tackle a wide range of NLP problems using deep learning, and will gain a deeper appreciation for the powerful combination of deep learning and natural language processing in transforming industries like healthcare, finance, and customer service. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798896730347
Cantidad disponible: 1 disponibles