Reactive Publishing
Random processes and Markov chains form the foundation of stochastic modeling, widely used in fields like finance, engineering, machine learning, and operations research. These mathematical tools help model uncertainty, decision-making, and dynamic systems, providing insights into everything from financial markets and queuing systems to AI algorithms and biological processes.
This comprehensive guide breaks down complex topics into clear explanations and practical applications, making it ideal for students, researchers, and professionals who want to build a strong mathematical foundation in stochastic processes.
What You’ll Learn:Fundamentals of Random Processes – Poisson processes, Gaussian processes, and Wiener processes
Discrete-Time & Continuous-Time Markov Chains – Transition probabilities, steady-state analysis, and Chapman-Kolmogorov equations
Stochastic Modeling Techniques – Applications in queuing theory, inventory management, and dynamic systems
Hidden Markov Models (HMMs) – Applications in speech recognition, finance, and artificial intelligence
Martingales & Stochastic Optimization – How probability models are used in decision-making under uncertainty
Monte Carlo Simulations & Markov Chain Monte Carlo (MCMC) – Numerical methods for complex stochastic systems
Practical Examples & Case Studies – Applications in economics, physics, engineering, and data science
Students & Researchers – Build a solid foundation in probability, stochastic processes, and Markov models
Engineers & Scientists – Apply stochastic modeling techniques to real-world problems
Data Scientists & AI Practitioners – Leverage Markov chains for machine learning and predictive analytics
Finance & Business Professionals – Use Markov models for risk analysis and market prediction
With clear explanations, real-world applications, and step-by-step examples, this book makes random processes and Markov chains accessible to a broad audience.
Master stochastic modeling—get your copy today!
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 50058171-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798312327731
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50058171
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Reactive PublishingMaster Random Processes and Markov Chains for Real-World ApplicationsRandom processes and Markov chains form the foundation of stochastic modeling, widely used in fields like finance, engineering, machine learning, and operations research. These mathematical tools help model uncertainty, decision-making, and dynamic systems, providing insights into everything from financial markets and queuing systems to AI algorithms and biological processes.This comprehensive guide breaks down complex topics into clear explanations and practical applications, making it ideal for students, researchers, and professionals who want to build a strong mathematical foundation in stochastic processes.What You'll Learn: Fundamentals of Random Processes - Poisson processes, Gaussian processes, and Wiener processesDiscrete-Time & Continuous-Time Markov Chains - Transition probabilities, steady-state analysis, and Chapman-Kolmogorov equationsStochastic Modeling Techniques - Applications in queuing theory, inventory management, and dynamic systemsHidden Markov Models (HMMs) - Applications in speech recognition, finance, and artificial intelligenceMartingales & Stochastic Optimization - How probability models are used in decision-making under uncertaintyMonte Carlo Simulations & Markov Chain Monte Carlo (MCMC) - Numerical methods for complex stochastic systemsPractical Examples & Case Studies - Applications in economics, physics, engineering, and data scienceWho This Book is For: Students & Researchers - Build a solid foundation in probability, stochastic processes, and Markov models Engineers & Scientists - Apply stochastic modeling techniques to real-world problemsData Scientists & AI Practitioners - Leverage Markov chains for machine learning and predictive analyticsFinance & Business Professionals - Use Markov models for risk analysis and market predictionWith clear explanations, real-world applications, and step-by-step examples, this book makes random processes and Markov chains accessible to a broad audience.Master stochastic modeling-get your copy today! Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798312327731
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9798312327731
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9798312327731
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798312327731_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 50058171-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50058171
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Reactive PublishingMaster Random Processes and Markov Chains for Real-World ApplicationsRandom processes and Markov chains form the foundation of stochastic modeling, widely used in fields like finance, engineering, machine learning, and operations research. These mathematical tools help model uncertainty, decision-making, and dynamic systems, providing insights into everything from financial markets and queuing systems to AI algorithms and biological processes.This comprehensive guide breaks down complex topics into clear explanations and practical applications, making it ideal for students, researchers, and professionals who want to build a strong mathematical foundation in stochastic processes.What You'll Learn: Fundamentals of Random Processes - Poisson processes, Gaussian processes, and Wiener processesDiscrete-Time & Continuous-Time Markov Chains - Transition probabilities, steady-state analysis, and Chapman-Kolmogorov equationsStochastic Modeling Techniques - Applications in queuing theory, inventory management, and dynamic systemsHidden Markov Models (HMMs) - Applications in speech recognition, finance, and artificial intelligenceMartingales & Stochastic Optimization - How probability models are used in decision-making under uncertaintyMonte Carlo Simulations & Markov Chain Monte Carlo (MCMC) - Numerical methods for complex stochastic systemsPractical Examples & Case Studies - Applications in economics, physics, engineering, and data scienceWho This Book is For: Students & Researchers - Build a solid foundation in probability, stochastic processes, and Markov models Engineers & Scientists - Apply stochastic modeling techniques to real-world problemsData Scientists & AI Practitioners - Leverage Markov chains for machine learning and predictive analyticsFinance & Business Professionals - Use Markov models for risk analysis and market predictionWith clear explanations, real-world applications, and step-by-step examples, this book makes random processes and Markov chains accessible to a broad audience.Master stochastic modeling-get your copy today! Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798312327731
Cantidad disponible: 1 disponibles