Artículos relacionados a Optimization & Numerical Methods in Quant Finance:...

Optimization & Numerical Methods in Quant Finance: A Practical Guide to Portfolio Optimization, Derivatives Pricing, and Risk Management: 3 (Technical Topics for Quant Finance) - Tapa blanda

 
9798312129328: Optimization & Numerical Methods in Quant Finance: A Practical Guide to Portfolio Optimization, Derivatives Pricing, and Risk Management: 3 (Technical Topics for Quant Finance)

Sinopsis

Reactive Publishing

Master Optimization & Numerical Methods for Smarter Financial Decision-Making

Financial markets demand precision, and optimization & numerical methods are the backbone of portfolio management, option pricing, and risk assessment. From hedge funds to trading desks, mastering these techniques allows quants, traders, and financial engineers to build faster, more efficient models that drive profitability and minimize risk.

This comprehensive guide provides a step-by-step approach to applying optimization techniques and numerical algorithms to real-world financial problems, with a strong emphasis on practical implementation using Python.

What You’ll Learn:

Linear & Nonlinear Optimization in Finance – Lagrange multipliers, convex optimization, and portfolio allocation strategies
Numerical Solutions for Option Pricing – Finite difference methods, binomial trees, and Monte Carlo simulations
Gradient Descent & Machine Learning Applications – Optimizing financial models using stochastic gradient descent (SGD)
Constrained Optimization for Risk Management – Value at Risk (VaR) and efficient frontier calculations
Global vs. Local Optimization – Genetic algorithms, simulated annealing, and evolutionary strategies in finance
Numerical Linear Algebra for Quantitative Finance – Eigenvalue decomposition, PCA, and factor modeling
Python Implementations & Real-World Case Studies – Hands-on coding with SciPy, NumPy, and Pandas

Who This Book is For:

Traders & Portfolio Managers – Optimize asset allocation and risk-return profiles
Quantitative Analysts & Financial Engineers – Build more efficient pricing and risk models
Students & Researchers in Finance & Data Science – Strengthen your foundation in applied mathematics and computation

With clear explanations, real-world case studies, and Python implementations, this book transforms optimization and numerical methods into powerful tools for financial decision-making.

Enhance your financial models—get your copy today!


"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialIndependently published
  • Año de publicación2025
  • ISBN 13 9798312129328
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas258
  • EditorSchwartz Alice
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 4,65 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Optimization & Numerical Methods in Quant Finance:...

Imagen de archivo

Bisette, Vincent; Publishing, Reactive; Van Der Post, Hayden
Publicado por Independently published, 2025
ISBN 13: 9798312129328
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9798312129328_new

Contactar al vendedor

Comprar nuevo

EUR 18,94
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Bisette, Vincent; Publishing, Reactive; Van Der Post, Hayden
Publicado por Independently published, 2025
ISBN 13: 9798312129328
Nuevo Tapa blanda
Impresión bajo demanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: I-9798312129328

Contactar al vendedor

Comprar nuevo

EUR 18,81
Convertir moneda
Gastos de envío: EUR 6,96
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Reactive Publishing
Publicado por Independently Published, 2025
ISBN 13: 9798312129328
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Reactive PublishingMaster Optimization & Numerical Methods for Smarter Financial Decision-MakingFinancial markets demand precision, and optimization & numerical methods are the backbone of portfolio management, option pricing, and risk assessment. From hedge funds to trading desks, mastering these techniques allows quants, traders, and financial engineers to build faster, more efficient models that drive profitability and minimize risk.This comprehensive guide provides a step-by-step approach to applying optimization techniques and numerical algorithms to real-world financial problems, with a strong emphasis on practical implementation using Python.What You'll Learn: Linear & Nonlinear Optimization in Finance - Lagrange multipliers, convex optimization, and portfolio allocation strategiesNumerical Solutions for Option Pricing - Finite difference methods, binomial trees, and Monte Carlo simulationsGradient Descent & Machine Learning Applications - Optimizing financial models using stochastic gradient descent (SGD)Constrained Optimization for Risk Management - Value at Risk (VaR) and efficient frontier calculationsGlobal vs. Local Optimization - Genetic algorithms, simulated annealing, and evolutionary strategies in financeNumerical Linear Algebra for Quantitative Finance - Eigenvalue decomposition, PCA, and factor modelingPython Implementations & Real-World Case Studies - Hands-on coding with SciPy, NumPy, and PandasWho This Book is For: Traders & Portfolio Managers - Optimize asset allocation and risk-return profilesQuantitative Analysts & Financial Engineers - Build more efficient pricing and risk modelsStudents & Researchers in Finance & Data Science - Strengthen your foundation in applied mathematics and computationWith clear explanations, real-world case studies, and Python implementations, this book transforms optimization and numerical methods into powerful tools for financial decision-making.Enhance your financial models-get your copy today! Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798312129328

Contactar al vendedor

Comprar nuevo

EUR 21,65
Convertir moneda
Gastos de envío: EUR 35,05
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Reactive Publishing
Publicado por Independently Published, 2025
ISBN 13: 9798312129328
Nuevo Paperback

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Reactive PublishingMaster Optimization & Numerical Methods for Smarter Financial Decision-MakingFinancial markets demand precision, and optimization & numerical methods are the backbone of portfolio management, option pricing, and risk assessment. From hedge funds to trading desks, mastering these techniques allows quants, traders, and financial engineers to build faster, more efficient models that drive profitability and minimize risk.This comprehensive guide provides a step-by-step approach to applying optimization techniques and numerical algorithms to real-world financial problems, with a strong emphasis on practical implementation using Python.What You'll Learn: Linear & Nonlinear Optimization in Finance - Lagrange multipliers, convex optimization, and portfolio allocation strategiesNumerical Solutions for Option Pricing - Finite difference methods, binomial trees, and Monte Carlo simulationsGradient Descent & Machine Learning Applications - Optimizing financial models using stochastic gradient descent (SGD)Constrained Optimization for Risk Management - Value at Risk (VaR) and efficient frontier calculationsGlobal vs. Local Optimization - Genetic algorithms, simulated annealing, and evolutionary strategies in financeNumerical Linear Algebra for Quantitative Finance - Eigenvalue decomposition, PCA, and factor modelingPython Implementations & Real-World Case Studies - Hands-on coding with SciPy, NumPy, and PandasWho This Book is For: Traders & Portfolio Managers - Optimize asset allocation and risk-return profilesQuantitative Analysts & Financial Engineers - Build more efficient pricing and risk modelsStudents & Researchers in Finance & Data Science - Strengthen your foundation in applied mathematics and computationWith clear explanations, real-world case studies, and Python implementations, this book transforms optimization and numerical methods into powerful tools for financial decision-making.Enhance your financial models-get your copy today! Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798312129328

Contactar al vendedor

Comprar nuevo

EUR 20,39
Convertir moneda
Gastos de envío: EUR 65,22
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito