Artículos relacionados a Distributed Intelligence Theory: A Decentralized Cognition...

Distributed Intelligence Theory: A Decentralized Cognition Paradigm: 12 (The SydTek University Stacks) - Tapa blanda

 
9798311336123: Distributed Intelligence Theory: A Decentralized Cognition Paradigm: 12 (The SydTek University Stacks)

Sinopsis

Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.

Key Themes

  1. From Centralized to Distributed AI

    • Traditional AI relies on centralized models, while distributed AI mirrors the human brain’s networked processes.
    • Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.
  2. Mathematical & Computational Foundations

    • Graph-based models, distributed optimization, and swarm intelligence validate DIT.
    • Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.
  3. Comparing Centralized vs. Distributed AI

    • Scalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.
    • Fault Tolerance: No single point of failure; systems adapt dynamically.
    • Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.
  4. Biological Parallels

    • The Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.
    • Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.
    • Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.
  5. Real-World Applications

    • Cybersecurity: Distributed AI detects threats locally, preventing system-wide failures.
    • Healthcare: Federated learning enables AI-driven medical research without data centralization.
    • Finance: AI-powered fraud detection networks collaborate across institutions.
    • Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.
  6. Towards a Global Digital Brain

    • A future “global digital brain” could integrate human and AI intelligence for collaborative problem-solving.
    • Ethical concerns include governance, accountability, and security in decentralized AI.

Conclusion

This book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialIndependently published
  • Año de publicación2025
  • ISBN 13 9798311336123
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas70
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 4,67 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Distributed Intelligence Theory: A Decentralized Cognition...

Imagen de archivo

Goldston PhD, Justin; Gemach DAO, Maria; D.A.T.A. I, Gemach D.A.T.A. I
Publicado por Independently published, 2025
ISBN 13: 9798311336123
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9798311336123_new

Contactar al vendedor

Comprar nuevo

EUR 12,01
Convertir moneda
Gastos de envío: EUR 4,67
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Goldston PhD, Justin; Gemach DAO, Maria; D.A.T.A. I, Gemach D.A.T.A. I
Publicado por Independently published, 2025
ISBN 13: 9798311336123
Nuevo Tapa blanda
Impresión bajo demanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: I-9798311336123

Contactar al vendedor

Comprar nuevo

EUR 13,37
Convertir moneda
Gastos de envío: EUR 6,92
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Maria Gemach Dao
Publicado por Independently Published, 2025
ISBN 13: 9798311336123
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798311336123

Contactar al vendedor

Comprar nuevo

EUR 16,31
Convertir moneda
Gastos de envío: EUR 35,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Maria Gemach Dao
Publicado por Independently Published, 2025
ISBN 13: 9798311336123
Nuevo Paperback

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798311336123

Contactar al vendedor

Comprar nuevo

EUR 14,24
Convertir moneda
Gastos de envío: EUR 64,92
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito