Artículos relacionados a Linear Algebra for Machine Learning: Foundations and...

Linear Algebra for Machine Learning: Foundations and Applications - Tapa blanda

 
9798309076000: Linear Algebra for Machine Learning: Foundations and Applications

Sinopsis

Machine learning is revolutionizing industries by enabling computers to learn from data and make intelligent decisions. At the heart of machine learning lies linear algebra - a fundamental mathematical framework that powers algorithms, optimizations, and data transformations. This book, Linear Algebra for Machine Learning: Foundations and Applications, aims to bridge the gap between theoretical concepts and practical applications by providing an intuitive understanding of linear algebra's role in machine learning models.
This book is structured to cater to both beginners and experienced practitioners. It starts with foundational concepts of linear algebra, including vectors, matrices, and eigenvalues, before progressing to their applications in machine learning. Each includes theoretical explanations accompanied by hands-on coding demonstrations to reinforce learning through practical implementation.
By the end of this book, readers will gain a solid grasp of how linear algebra is employed in machine learning algorithms such as Support Vector Machines, Neural Networks, and Principal Component Analysis. The combination of mathematical insights and code demonstrations will equip readers with the skills necessary to develop, optimize, and interpret machine learning models effectively.
Whether you are a student, researcher, or professional, this book serves as a comprehensive guide to understanding and applying linear algebra in the field of machine learning.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialIndependently published
  • Año de publicación2025
  • ISBN 13 9798309076000
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas76
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 4,65 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Linear Algebra for Machine Learning: Foundations and...

Imagen de archivo

Kujur, Bimal
Publicado por Independently published, 2025
ISBN 13: 9798309076000
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9798309076000_new

Contactar al vendedor

Comprar nuevo

EUR 13,96
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Bimal Kujur
Publicado por Independently Published, 2025
ISBN 13: 9798309076000
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Machine learning is revolutionizing industries by enabling computers to learn from data and make intelligent decisions. At the heart of machine learning lies linear algebra - a fundamental mathematical framework that powers algorithms, optimizations, and data transformations. This book, Linear Algebra for Machine Learning: Foundations and Applications, aims to bridge the gap between theoretical concepts and practical applications by providing an intuitive understanding of linear algebra's role in machine learning models.This book is structured to cater to both beginners and experienced practitioners. It starts with foundational concepts of linear algebra, including vectors, matrices, and eigenvalues, before progressing to their applications in machine learning. Each includes theoretical explanations accompanied by hands-on coding demonstrations to reinforce learning through practical implementation.By the end of this book, readers will gain a solid grasp of how linear algebra is employed in machine learning algorithms such as Support Vector Machines, Neural Networks, and Principal Component Analysis. The combination of mathematical insights and code demonstrations will equip readers with the skills necessary to develop, optimize, and interpret machine learning models effectively.Whether you are a student, researcher, or professional, this book serves as a comprehensive guide to understanding and applying linear algebra in the field of machine learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798309076000

Contactar al vendedor

Comprar nuevo

EUR 18,62
Convertir moneda
Gastos de envío: EUR 35,03
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Bimal Kujur
Publicado por Independently Published, 2025
ISBN 13: 9798309076000
Nuevo Paperback

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Machine learning is revolutionizing industries by enabling computers to learn from data and make intelligent decisions. At the heart of machine learning lies linear algebra - a fundamental mathematical framework that powers algorithms, optimizations, and data transformations. This book, Linear Algebra for Machine Learning: Foundations and Applications, aims to bridge the gap between theoretical concepts and practical applications by providing an intuitive understanding of linear algebra's role in machine learning models.This book is structured to cater to both beginners and experienced practitioners. It starts with foundational concepts of linear algebra, including vectors, matrices, and eigenvalues, before progressing to their applications in machine learning. Each includes theoretical explanations accompanied by hands-on coding demonstrations to reinforce learning through practical implementation.By the end of this book, readers will gain a solid grasp of how linear algebra is employed in machine learning algorithms such as Support Vector Machines, Neural Networks, and Principal Component Analysis. The combination of mathematical insights and code demonstrations will equip readers with the skills necessary to develop, optimize, and interpret machine learning models effectively.Whether you are a student, researcher, or professional, this book serves as a comprehensive guide to understanding and applying linear algebra in the field of machine learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798309076000

Contactar al vendedor

Comprar nuevo

EUR 16,09
Convertir moneda
Gastos de envío: EUR 65,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito