Machine learning is revolutionizing industries by enabling computers to learn from data and make intelligent decisions. At the heart of machine learning lies linear algebra - a fundamental mathematical framework that powers algorithms, optimizations, and data transformations. This book, Linear Algebra for Machine Learning: Foundations and Applications, aims to bridge the gap between theoretical concepts and practical applications by providing an intuitive understanding of linear algebra's role in machine learning models.
This book is structured to cater to both beginners and experienced practitioners. It starts with foundational concepts of linear algebra, including vectors, matrices, and eigenvalues, before progressing to their applications in machine learning. Each includes theoretical explanations accompanied by hands-on coding demonstrations to reinforce learning through practical implementation.
By the end of this book, readers will gain a solid grasp of how linear algebra is employed in machine learning algorithms such as Support Vector Machines, Neural Networks, and Principal Component Analysis. The combination of mathematical insights and code demonstrations will equip readers with the skills necessary to develop, optimize, and interpret machine learning models effectively.
Whether you are a student, researcher, or professional, this book serves as a comprehensive guide to understanding and applying linear algebra in the field of machine learning.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 16,99 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 2,30 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798309076000
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9798309076000
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798309076000_new
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9798309076000
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9798309076000
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9798309076000
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Machine learning is revolutionizing industries by enabling computers to learn from data and make intelligent decisions. At the heart of machine learning lies linear algebra - a fundamental mathematical framework that powers algorithms, optimizations, and data transformations. This book, Linear Algebra for Machine Learning: Foundations and Applications, aims to bridge the gap between theoretical concepts and practical applications by providing an intuitive understanding of linear algebra's role in machine learning models.This book is structured to cater to both beginners and experienced practitioners. It starts with foundational concepts of linear algebra, including vectors, matrices, and eigenvalues, before progressing to their applications in machine learning. Each includes theoretical explanations accompanied by hands-on coding demonstrations to reinforce learning through practical implementation.By the end of this book, readers will gain a solid grasp of how linear algebra is employed in machine learning algorithms such as Support Vector Machines, Neural Networks, and Principal Component Analysis. The combination of mathematical insights and code demonstrations will equip readers with the skills necessary to develop, optimize, and interpret machine learning models effectively.Whether you are a student, researcher, or professional, this book serves as a comprehensive guide to understanding and applying linear algebra in the field of machine learning. Nº de ref. del artículo: 9798309076000
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 49880634-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49880634
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 49880634-n
Cantidad disponible: Más de 20 disponibles