Advancements in deep learning, reinforcement learning, and generative AI have dramatically extended the toolkit of machine learning methods available to enterprise practitioners. This book provides a comprehensive guide to how marketing, supply chain, and production operations can be improved using these new methods, as well as their use in conjunction with traditional analytics and optimization approaches. The book is written for enterprise data scientists and analytics managers, and will also be useful for graduate students in operations research and applied statistics.
The Theory and Practice of Enterprise AI is divided into five parts. Part I introduces the basic concepts of enterprise decision automation, deep learning, generative AI, large language models, and reinforcement learning methods. Part II presents recipes for customer analytics and personalization. Part III describes search, recommendations, knowledge management, and media generation solutions that are focused on content data such as texts and images. Part IV discusses methods for demand forecasting, price optimization, and inventory management. Finally, Part V presents blueprints for anomaly detection and visual inspection that help to improve production and transportation operations. Python code examples are provided in the complementary online repository to support the reader's understanding of the implementation details.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 17,45 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,98 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9798218169671
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9798218169671_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9798218169671
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 46006652-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9798218169671
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46006652
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 46006652-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46006652
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Advancements in deep learning, reinforcement learning, and generative AI have dramatically extended the toolkit of machine learning methods available to enterprise practitioners. This book provides a comprehensive guide to how marketing, supply chain, and production operations can be improved using these new methods, as well as their use in conjunction with traditional analytics and optimization approaches. The book is written for enterprise data scientists and analytics managers, and will also be useful for graduate students in operations research and applied statistics.The Theory and Practice of Enterprise AI is divided into five parts. Part I introduces the basic concepts of enterprise decision automation, deep learning, generative AI, large language models, and reinforcement learning methods. Part II presents recipes for customer analytics and personalization. Part III describes search, recommendations, knowledge management, and media generation solutions that are focused on content data such as texts and images. Part IV discusses methods for demand forecasting, price optimization, and inventory management. Finally, Part V presents blueprints for anomaly detection and visual inspection that help to improve production and transportation operations. Python code examples are provided in the complementary online repository to support the reader's understanding of the implementation details. Nº de ref. del artículo: 9798218169671
Cantidad disponible: 2 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_432016029
Cantidad disponible: 1 disponibles