In a world increasingly reliant on Internet of Things (IoT) devices, ensuring their security is paramount. Yet, these very devices are vulnerable to cyberattacks, posing significant threats to individuals and organizations alike. To combat this, machine learning has emerged as a powerful tool for network intrusion detection in IoT environments.Delving deep into this intersection of cybersecurity and machine learning, this book presents a comprehensive exploration of feature reduction techniques for IoT network intrusion detection. Drawing from extensive research, it offers a meticulous comparison of feature extraction and selection methods within a machine learning-based attack classification framework.Through rigorous analysis of performance metrics such as accuracy, f1-score, and runtime, the book sheds light on the efficacy of these techniques on the heterogeneous IoT dataset known as Network TON-IoT. Unveiling key insights, it reveals that while feature extraction tends to outperform feature selection in detection performance, the latter exhibits advantages in model training and inference time.But the findings don’t stop there. The book delves deeper into the nuances of IoT security, addressing the challenges posed by computational resource constraints. It underscores the importance of feature reduction in constructing lightweight yet effective intrusion detection models tailored for IoT scenarios.Moreover, the book offers practical guidance for selecting intrusion detection methods tailored to specific IoT environments. By analyzing the trade-offs between feature extraction and selection, it equips readers with the knowledge to navigate the complexities of IoT security.
"Sinopsis" puede pertenecer a otra edición de este libro.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47793493
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47793493-n
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9789999317795
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9789999317795
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Feature Selection and Feature Extraction in Machine Learning-Based IoT Intrusion Detection System. Book. Nº de ref. del artículo: BBS-9789999317795
Cantidad disponible: 5 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9789999317795
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 54 pages. 6.00x0.11x9.00 inches. In Stock. Nº de ref. del artículo: x-9999317790
Cantidad disponible: 2 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9789999317795
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26400990717
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 47793493-n
Cantidad disponible: Más de 20 disponibles